1
|
Layek S, Sengupta N. Response of Foldable Protein Conformations to Non-Physiological Perturbations: Interplay of Thermal Factors and Confinement. Chemphyschem 2024:e202400618. [PMID: 39104119 DOI: 10.1002/cphc.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Technological advances frequently interface biomolecules with nanomaterials at non-physiological conditions, necessitating response characterization of key processes. Similar encounters are expected in cellular contexts. We report in silico investigations of the response of diverse protein conformational states to lowering of temperature and imposition of spatial constraints. Conformational states are represented by folded form of the Albumin binding domain (ABD) protein, its compact denatured form, and structurally disordered nascent folding elements. Data from extensive simulations are evaluated to elicit structural, thermodynamic and dynamic responses of the states and their associated environment. Analyses reveal alterations to folding propensity with reduced thermal energy and confinement, with signatures of trend reversal in highly disordered states. Across temperatures, confinement has restrictive effects on volume and energetic fluctuations, leading to narrowing of differences in isothermal compressibility (κ) and heat capacities (Cp). While excess (over ideal gas) entropy of the hydration layer marks dependence on the conformational state at bulk, confinement triggers erasure of differences. These observations are largely consistent with timescales of protein-water hydrogen bonding dynamics. The results implicate multi-factorial associations within a simple bio-nano complex. We expect the current study to motivate investigations of more biologically relevant interfaces towards mechanistic understanding and potential applications.
Collapse
Affiliation(s)
- Sarbajit Layek
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata Mohanpur, West Bengal, 741246, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata Mohanpur, West Bengal, 741246, India
| |
Collapse
|
2
|
Sahoo S, Pal T, Mondal S, Ghanta KP, Bandyopadhyay S. Conformational Properties of Aβ Peptide Oligomers in Aqueous Ionic Liquid Solution: Insights from Molecular Simulation Studies. J Phys Chem B 2023; 127:10960-10973. [PMID: 38091356 DOI: 10.1021/acs.jpcb.3c05490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Alzheimer's disease is a progressive irreversible neurological disorder with abnormal extracellular deposition of amyloid β (Aβ) peptides in the brain. We have carried out atomistic molecular dynamics simulations to investigate the size-dependent conformational properties of aggregated Aβ oligomers of different orders, namely, pentamer [O(5)], decamer [O(10)], and hexadecamer [O(16)] in aqueous solutions containing the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The calculations revealed reduced peptide conformational fluctuations in O(5) and O(10) in the presence of the IL. In contrast, the higher order oligomer [O(16)] has been found to exhibit greater structural distortion due to enhanced flexibilities of its peptide units in the presence of the IL. Based on the distributions of the solvent (water) and the cosolvent (IL) components, it is demonstrated that exchange of water by the IL ion pairs at the exterior surface of the oligomers primarily occurs beyond the first layer of surface-bound water molecules. Importantly, a reduced number of relatively weaker peptide salt bridges have been found in O(16) in binary water-IL solution as compared to the other two smaller-sized oligomers [O(5) and O(10)]. Such differential influence of the IL on peptide salt bridges results in less favorable binding free energies of peptide monomers to O(16), which leads to its greater structural distortion and reduced stability compared to those of O(5) and O(10).
Collapse
Affiliation(s)
- Subhadip Sahoo
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tamisra Pal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Midya US, Bandyopadhyay S. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive Tenebrio molitor Antifreeze Protein. J Phys Chem B 2023; 127:121-132. [PMID: 36594578 DOI: 10.1021/acs.jpcb.2c06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Quasi-ice-like hydration waters on the ice-binding surface (IBS) of an antifreeze protein (AFP) commonly exhibit sluggish dynamics especially at low temperatures. In this work, we have analyzed molecular dynamics (MD) simulation trajectories at two different temperatures for Tenebrio molitor antifreeze protein (TmAFP) to explore whether the unique quasi-ice-like structuring of hydration water has any impact on making their dynamics slower on the IBS of the protein. Our calculation reveals that, as translational dynamics is coupled with the conformational fluctuations, hydration water on the IBS exhibits sluggish translational motion due to reduced flexibility of the IBS compared to that on the non-ice-binding surface (NIBS) of the protein. Interestingly, it is noticed that rotational motion of hydration water is not coupled with the conformational fluctuations of the surfaces. In that case, structural relaxations of the protein-water (PW) and water-water (WW) hydrogen bonds compete with each other to make the rotational dynamics of hydration water around the IBS either faster or slower with respect to those around the NIBS. At low temperature, the slower structural relaxation of water-water hydrogen bonds dominates and imparts sluggish rotational motion of the hydration water on the IBS of the protein. The slower structural relaxation of water-water hydrogen bonds and hence the retarded rotational dynamics, despite the weak short-lived PW hydrogen bonds on the IBS, is clearly a manifestation of the rigid quasi-ice-like structure of the hydration shell on that surface.
Collapse
Affiliation(s)
- Uday Sankar Midya
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
4
|
Khatua P, Mondal S, Gupta M, Bandyopadhyay S. In Silico Studies to Predict the Role of Solvent in Guiding the Conformations of Intrinsically Disordered Peptides and Their Aggregated Protofilaments. ACS OMEGA 2022; 7:43337-43345. [PMID: 36506131 PMCID: PMC9730305 DOI: 10.1021/acsomega.2c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The formation of amyloids due to the self-assembly of intrinsically disordered proteins or peptides is a hallmark for different neurodegenerative diseases. For example, amyloids formed by the amyloid beta (Aβ) peptides are responsible for the most devastating neuropathological disease, namely, Alzheimer's disease, while aggregation of α-synuclein peptides causes the etiology of another neuropathological disease, Parkinson's disease. Characterization of the intermediates and the final amyloid formed during the aggregation process is, therefore, crucial for microscopic understanding of the origin behind such diseases, as well as for the development of proper therapeutics to combat those. However, most of the research activities reported in this area have been directed toward examining the early stages of the aggregation process, including probing the conformational characteristics of the responsible protein/peptide in the monomeric state or in small oligomeric forms. This is because the small soluble oligomers have been found to be more deleterious than the final insoluble amyloids. This review discusses some of the recent findings obtained from our simulation studies on Aβ and α-synuclein monomers and small preformed Aβ aggregates. A molecular-level insight of the aggregation process with a special emphasis on the role of water in inducing the aggregation process has been provided.
Collapse
Affiliation(s)
- Prabir Khatua
- Molecular
Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Mondal
- Molecular
Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhulika Gupta
- Department
of Chemistry and Chemical Biology, Indian
Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India
| | - Sanjoy Bandyopadhyay
- Molecular
Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Khatua P, Gupta M, Bandyopadhyay S. Exploring Heterogeneous Dynamical Environment around an Ensemble of Aβ 42 Peptide Monomer Conformations. J Chem Inf Model 2022; 62:3453-3462. [PMID: 35816665 DOI: 10.1021/acs.jcim.2c00593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploring the conformational properties of amyloid β (Aβ) peptides and the role of solvent (water) in guiding the dynamical environment at their interfaces is crucial for microscopic understanding of Aβ misfolding, which is involved in causing the most common neurodegenerative disorder, i.e., Alzheimer's disease. While numerous studies in the past have emphasized examining the conformational states of Aβ peptides, the role of water has not received much attention. Here, we have performed all-atom molecular dynamics simulations of several full-length Aβ42 peptide monomers with different initial configurations. Our efforts are directed toward probing the origin of the heterogeneous dynamics of water around various segments of the Aβ peptide, identified as the two terminal segments (N-term and C-term) and the two hydrophobic segments (hp1 and hp2), along with the central turn region interconnecting hp1 and hp2. Our results revealed that water hydrating hp1, hp2, and turn (nonterminal segments) and C-term segments exhibit nonuniformly restricted translational as well as rotational motions. The degree of such restriction has been found to be correlated with the hydrogen bond relaxation time scales at the interface. Importantly, it is revealed that the water molecules around hp1 and, to some extent, around hp2, form relatively rigid hydration layers, compared to that around the other segments. Such rigid hydration layers arise due to relatively more solid-like caging motions resulting in relatively lesser hydration entropy. As hp1 and hp2 have been demonstrated to play a central role in Aβ aggregation, we believe that distinct water dynamics in the vicinity of these two segments, as outlined in this study, can provide vital information in understanding the early stages of the onset of the aggregation process of such peptides at higher concentration that can further aid toward advances in AD therapeutics.
Collapse
Affiliation(s)
- Prabir Khatua
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| | - Madhulika Gupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand - 826004, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| |
Collapse
|
6
|
Mondal S, Ghanta KP, Bandyopadhyay S. Dynamic Heterogeneity at the Interface of an Intrinsically Disordered Peptide. J Chem Inf Model 2022; 62:1942-1955. [PMID: 35384652 DOI: 10.1021/acs.jcim.2c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is believed that water around an intrinsically disordered protein or peptide (IDP) in an aqueous environment plays an important role in guiding its conformational properties and aggregation behavior. However, despite its importance, only a handful of studies exploring the correlation between the conformational motions of an IDP and the microscopic properties of water at its surface are reported. Attempts have been made in this work to study the dynamic properties of water present in the vicinity of α-synuclein, an IDP associated with Parkinson's disease (PD). Room temperature molecular dynamics (MD) simulations of eight α-synuclein1-95 peptides with a wide range of initial conformations have been carried out in aqueous media. The calculations revealed that due to solid-like caging motions, the translational and rotational mobility of water molecules near the surfaces of the peptide repeat unit segments R1 to R7 are significantly restricted. A small degree of dynamic heterogeneity in the hydration environment around the repeat units has been observed with water near the hydrophobic R6 unit exhibiting relatively more restricted diffusivity. The time scales involving the overall structural relaxations of peptide-water and water-water hydrogen bonds near the peptide have been found to be correlated with the time scale of diffusion of the interfacial water molecules. We believe that the relatively more hindered dynamic environment near R6 can help create water-mediated contacts centered around R6 between peptide monomers at a higher concentration, thereby enhancing the early stages of peptide aggregation.
Collapse
Affiliation(s)
- Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
7
|
Chen G, Li Y, Miao Y, Liu B. Recent developments on bismuth oxyhalide-based functional nanomaterials for biomedical applications. Biomater Sci 2022; 10:5809-5830. [DOI: 10.1039/d2bm01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional bismuth oxyhalide (BiOX, X = F, Cl, Br, and I) nanomaterials have great potential advantages in medical diagnostic and therapeutic applications. Pure BiOX nanomaterials have some limitations such as...
Collapse
|
8
|
Mondal S, Bandyopadhyay S. Heterogeneous Dynamical Environment at the Interface of a Protein-DNA Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4567-4581. [PMID: 32267701 DOI: 10.1021/acs.langmuir.9b03175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Binding between protein and DNA is an essential process to regulate different biological activities. Two puzzling questions in protein-DNA recognition are (i) how the protein's binding domain identifies the DNA sequence in an aqueous solution and (ii) how the formation of the complex alters the dynamical environment around it. In this work, we present results obtained from molecular dynamics simulations of the N-terminal α-helical domain of the λ-repressor protein (in dimeric form) bound to the corresponding operator DNA. Effects of formation of the complex in modifying the microscopic dynamics of water as well as the kinetics of hydrogen bonds at the interface have been explored. Locally heterogeneous restricted water motions at the complex interface have been observed, the extent of restriction being more significant around the directly bound residues of the protein and the DNA. In particular, the calculation revealed the existence of significantly constrained motionally restricted water layer that can form either bridges around the directly bound residues of the protein and DNA or are engaged in forming water-mediated contacts between a fraction of the unbound residues. More importantly, it is observed that the restricted water motion around the complex is correlated with the hydrogen bond relaxation time scale at the interface. It is further demonstrated that the kinetics of water-water hydrogen bonds involving the bridged water are influenced more due to complex formation.
Collapse
Affiliation(s)
- Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
- Centre for Computational and Data Sciences, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
9
|
Effect of aggregated Aβ protofilaments on intermolecular vibrational spectrum of confined water. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1699-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Trofimov YA, Krylov NA, Efremov RG. Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel. Int J Mol Sci 2019; 20:ijms20174285. [PMID: 31480555 PMCID: PMC6747475 DOI: 10.3390/ijms20174285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022] Open
Abstract
Solvation effects play a key role in chemical and biological processes. The microscopic properties of water near molecular surfaces are radically different from those in the bulk. Furthermore, the behavior of water in confined volumes of a nanometer scale, including transmembrane pores of ion channels, is especially nontrivial. Knowledge at the molecular level of structural and dynamic parameters of water in such systems is necessary to understand the mechanisms of ion channels functioning. In this work, the results of molecular dynamics (MD) simulations of water in the pore and selectivity filter domains of TRPV1 (Transient Receptor Potential Vanilloid type 1) membrane channel are considered. These domains represent nanoscale volumes with strongly amphiphilic walls, where physical behavior of water radically differs from that of free hydration (e.g., at protein interfaces) or in the bulk. Inside the pore and filter domains, water reveals a very heterogeneous spatial distribution and unusual dynamics: It forms compact areas localized near polar groups of particular residues. Residence time of water molecules in such areas is at least 1.5 to 3 times larger than that observed for similar groups at the protein surface. Presumably, these water “blobs” play an important role in the functional activity of TRPV1. In particular, they take part in hydration of the hydrophobic TRPV1 pore by localizing up to six waters near the so-called “lower gate” of the channel and reducing by this way the free energy barrier for ion and water transport. Although the channel is formed by four identical protein subunits, which are symmetrically packed in the initial experimental 3D structure, in the course of MD simulations, hydration of the same amino acid residues of individual subunits may differ significantly. This greatly affects the microscopic picture of the distribution of water in the channel and, potentially, the mechanism of its functioning. Therefore, reconstruction of the full picture of TRPV1 channel solvation requires thorough atomistic simulations and analysis. It is important that the naturally occurring porous volumes, like ion-conducting protein domains, reveal much more sophisticated and fine-tuned regulation of solvation than, e.g., artificially designed carbon nanotubes.
Collapse
Affiliation(s)
- Yury A Trofimov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia
- National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
- National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Shosse, 31, 115409 Moscow, Russia
| | - Nikolay A Krylov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia
- National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - Roman G Efremov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
- National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia.
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701 Moscow, Russia.
| |
Collapse
|
11
|
Casanovas J, Mayans E, Díaz A, Gil AM, Jiménez AI, Cativiela C, Puiggalí J, Alemán C. Amyloid fibrils from organic solutions of an amphiphilic dipeptide. Chem Commun (Camb) 2019; 55:8556-8559. [DOI: 10.1039/c9cc04139g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A diphenylalanine amphiphile blocked at the C-terminus with a fluorenylmethyl ester and stabilized at the N-terminus with a trifluoroacetate forms amyloid fibril networks in organic solvents.
Collapse
Affiliation(s)
- Jordi Casanovas
- Departament de Química
- Escola Politècnica Superior, Universitat de Lleida
- Lleida E-25001
- Spain
| | - Enric Mayans
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering
- EEBE
- Universitat Politècnica de Catalunya
- 08019 Barcelona
- Spain
| | - Angélica Díaz
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering
- EEBE
- Universitat Politècnica de Catalunya
- 08019 Barcelona
- Spain
| | - Ana M. Gil
- Departamento de Quimica Organica
- Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Ana I. Jiménez
- Departamento de Quimica Organica
- Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Carlos Cativiela
- Departamento de Quimica Organica
- Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering
- EEBE
- Universitat Politècnica de Catalunya
- 08019 Barcelona
- Spain
| | - Carlos Alemán
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering
- EEBE
- Universitat Politècnica de Catalunya
- 08019 Barcelona
- Spain
| |
Collapse
|
12
|
Khatua P, Bandyopadhyay S. Understanding the microscopic origin behind heterogeneous properties of water confined in and around A β17-42 protofilaments. J Chem Phys 2018; 149:065101. [PMID: 30111136 DOI: 10.1063/1.5040672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aggregation of amyloid beta (Aβ) peptides in the brain is responsible for one of the most devastating neurodegenerative diseases, namely, Alzheimer's disease. In this study, we have carried out atomistic molecular dynamics simulations to explore the effects of non-uniform structural distortions of Aβ17-42 pre-fibrillar aggregates of different sizes on the microscopic structure and ordering of water molecules confined within their amphiphilic nanocores. The calculations revealed non-uniform peptide-water interactions resulting in simultaneous existence of both highly ordered and disordered water molecules within the spatially heterogeneous confined environment of the protofilament cores. It is found that the high degree of ordering originates from a sizable fraction of doubly coordinated core water molecules, while the randomly oriented ones are those that are coordinated with three neighbors in their first coordination shells. Furthermore, it is quantitatively demonstrated that relative fractions of these two types of water molecules are correlated with the protofilament core topology and the degree of confinement within that. It is proposed that the ordered core waters are likely to stabilize the Aβ protofilaments by screening the residue charges and favoring water-mediated salt bridge formations, while the randomly oriented ones can drive further growth of the protofilaments by being displaced easily during the docking of additional peptides. In that way, both types of core water molecules can play equally important roles in controlling the growth and stability of the Aβ-aggregates.
Collapse
Affiliation(s)
- Prabir Khatua
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|