• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4602291)   Today's Articles (42)   Subscriber (49368)
For: Nie X, Meng L, Wang H, Chen Y, Guo X, Song C. DFT insight into the effect of potassium on the adsorption, activation and dissociation of CO2 over Fe-based catalysts. Phys Chem Chem Phys 2018;20:14694-14707. [PMID: 29774346 DOI: 10.1039/c8cp02218f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Number Cited by Other Article(s)
1
Wang K, Li Z, Gao X, Ma Q, Zhang J, Zhao TS, Tsubaki N. Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review. ENVIRONMENTAL RESEARCH 2024;242:117715. [PMID: 37996000 DOI: 10.1016/j.envres.2023.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
2
Ma YP, Wang GC. Comparative theoretical study of CO2 activation on clean and potassium-preadsorbed low index surfaces of transition metals. J Mol Model 2023;29:375. [PMID: 37964098 DOI: 10.1007/s00894-023-05784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
3
Abdullayev Y, Karimova N, Schenberg LA, Ducati LC, Autschbach J. Computational predictions on Brønsted acidic ionic liquid-catalyzed carbon dioxide conversion to five-membered heterocyclic carbonyl derivatives. Phys Chem Chem Phys 2023;25:8624-8630. [PMID: 36891907 DOI: 10.1039/d2cp05877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
4
Hua Z, Yang Y, Liu J. Direct hydrogenation of carbon dioxide to value-added aromatics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
5
Lu P, Liang J, Wang K, Liu B, Atchimarungsri T, Wang Y, Zhang X, Tian J, Jiang Y, Liu Z, Reubroycharoen P, Zhao T, Zhang J, Gao X. Boosting Liquid Hydrocarbon Synthesis from CO2 Hydrogenation via Tailoring Acid Properties of HZSM-5 Zeolite. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
6
Wang H, Nie X, Liu Y, Janik MJ, Han X, Deng Y, Hu W, Song C, Guo X. Mechanistic Insight into Hydrocarbon Synthesis via CO2 Hydrogenation on χ-Fe5C2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022;14:37637-37651. [PMID: 35969512 DOI: 10.1021/acsami.2c07029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
7
Pahija E, Panaritis C, Gusarov S, Shadbahr J, Bensebaa F, Patience G, Boffito DC. Experimental and Computational Synergistic Design of Cu and Fe Catalysts for the Reverse Water–Gas Shift: A Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
8
Computational identification of facet-dependent CO2 initial activation and hydrogenation over iron carbide catalyst. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
9
Liu X, Xu M, Cao C, Yang Z, Xu J. Effects of Zinc on χ-Fe5C2 for Carbon Dioxide Hydrogenation to Olefins: Insights from Experimental and Density Function Theory Calculations. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
10
Kwawu CR, Aniagyei A, Konadu D, Menkah E, Tia R. First-principles DFT insights into the mechanisms of CO2 reduction to CO on Fe (100)-Ni bimetals. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
11
Zhu J, Wang P, Zhang X, Zhang G, Li R, Li W, Senftle TP, Liu W, Wang J, Wang Y, Zhang A, Fu Q, Song C, Guo X. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation. SCIENCE ADVANCES 2022;8:eabm3629. [PMID: 35119927 PMCID: PMC8816344 DOI: 10.1126/sciadv.abm3629] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
12
Panaritis C, Yan S, Couillard M, Baranova EA. Electrochemical study of the metal-support interaction between FeOx nanoparticles and cobalt oxide support for the reverse water gas shift reaction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Etim UJ, Zhang C, Zhong Z. Impacts of the Catalyst Structures on CO2 Activation on Catalyst Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021;11:3265. [PMID: 34947613 PMCID: PMC8707475 DOI: 10.3390/nano11123265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
14
Chen H, Zhao Z, Wang G, Zheng Z, Chen J, Kuang Q, Xie Z. Dynamic Phase Transition of Iron Oxycarbide Facilitated by Pt Nanoparticles for Promoting the Reverse Water Gas Shift Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
15
Wei J, Yao R, Han Y, Ge Q, Sun J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev 2021;50:10764-10805. [PMID: 34605829 DOI: 10.1039/d1cs00260k] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
16
Morales‐García Á, Viñes F, Gomes JRB, Illas F. Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO 2 conversion. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
17
Goud D, Gupta R, Maligal-Ganesh R, Peter SC. Review of Catalyst Design and Mechanistic Studies for the Production of Olefins from Anthropogenic CO2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03799] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
18
Han Y, Fang C, Ji X, Wei J, Ge Q, Sun J. Interfacing with Carbonaceous Potassium Promoters Boosts Catalytic CO2 Hydrogenation of Iron. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03215] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
19
Yuan F, Zhang G, Zhu J, Ding F, Zhang A, Song C, Guo X. Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.07.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
20
Zhu J, Zhang G, Li W, Zhang X, Ding F, Song C, Guo X. Deconvolution of the Particle Size Effect on CO2 Hydrogenation over Iron-Based Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01526] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Liu X, Cao C, Tian P, Zhu M, Zhang Y, Xu J, Tian Y, Han YF. Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
22
Geng F, Bonita Y, Jain V, Magiera M, Rai N, Hicks JC. Bimetallic Ru–Mo Phosphide Catalysts for the Hydrogenation of CO2 to Methanol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
23
Wang YX, Wang GC. A systematic theoretical study of the water gas shift reaction on the Pt/ZrO2 interface and Pt(111) face: key role of a potassium additive. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02287b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
24
Chen H, Yang M, Liu J, Lu G, Feng X. Insight into the effects of electronegativity on the H2 catalytic activation for CO2 hydrogenation: four transition metal cases from a DFT study. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01009j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
25
Ye RP, Ding J, Gong W, Argyle MD, Zhong Q, Wang Y, Russell CK, Xu Z, Russell AG, Li Q, Fan M, Yao YG. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat Commun 2019;10:5698. [PMID: 31836709 PMCID: PMC6910949 DOI: 10.1038/s41467-019-13638-9] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/18/2019] [Indexed: 11/12/2022]  Open
26
Nie X, Li W, Jiang X, Guo X, Song C. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons. ADVANCES IN CATALYSIS 2019. [DOI: 10.1016/bs.acat.2019.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
27
Chernyshova IV, Ponnurangam S. Activation of CO2 at the electrode–electrolyte interface by a co-adsorbed cation and an electric field. Phys Chem Chem Phys 2019;21:8797-8807. [DOI: 10.1039/c8cp07807f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA