1
|
Cunha RD, Romero-Téllez S, Lipparini F, Luque FJ, Curutchet C. Extending the MST Model to Large Biomolecular Systems: Parametrization of the ddCOSMO-MST Continuum Solvation Model. J Comput Chem 2025; 46:e70027. [PMID: 39797647 DOI: 10.1002/jcc.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Continuum solvation models such as the polarizable continuum model and the conductor-like screening model are widely used in quantum chemistry, but their application to large biosystems is hampered by their computational cost. Here, we report the parametrization of the Miertus-Scrocco-Tomasi (MST) model for the prediction of hydration free energies of neutral and ionic molecules based on the domain decomposition formulation of COSMO (ddCOSMO), which allows a drastic reduction of the computational cost by several orders of magnitude. We also introduce several novelties in MST, like a new definition of atom types based on hybridization and an automatic setup of the cavity for charged regions. The model is parametrized at the B3LYP/6-31+G(d) and PM6 levels of theory and compared to the performance of IEFPCM/MST. Then, we demonstrate the robustness of the parametrization on the SAMPL2, SAMPL4, and C10 datasets. The ddCOSMO/MST models provide errors of ~0.8 and ~3.2 kcal/mol for neutrals and ions, respectively, showing a remarkable balanced and accurate description of cations and anions.
Collapse
Affiliation(s)
- R D Cunha
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - S Romero-Téllez
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - F Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - F J Luque
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona (UB), Barcelona, Spain
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - C Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Mainas E, Curtin GM, Riddles SD, Pieri E. Biliverdin's Propionic Chains Influence Oligomerization in Sandercyanin. J Phys Chem B 2024; 128:12443-12455. [PMID: 39651944 DOI: 10.1021/acs.jpcb.4c06722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Sandercyanin is a mildly fluorescent biliprotein with a large Stokes shift, a tetrameric quaternary structure, and a biliverdin (BV) chromophore that does not covalently bond to the protein. To adapt this promising protein for use in bioimaging, it is necessary to produce monomeric mutants that retain the spectroscopic properties while increasing the fluorescence quantum yield. Modulating these properties through the protonation state of BV's propionic tails is a possible avenue, if detailed mechanistic information on the role of such chains becomes available. In this study, we use a microstate model for the titration process of BV and couple it with constant pH molecular dynamics to study protonation states in the apo protein, the artificial monomer, and the tetramer and identify shifts. Our results indicate that several residues might have a central role in oligomerization as a response to the presence of BV and especially to the protonation state of the propionic tails. While the absorption properties are not strongly impacted by the tails, their protonation state has an impact on the chromophore geometry, which likely influences the fluorescence.
Collapse
Affiliation(s)
- Eleftherios Mainas
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gregory M Curtin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Shaena D Riddles
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Elisa Pieri
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Ozaydin B, Curutchet C. Unraveling the role of thermal fluctuations on the exciton structure of the cryptophyte PC612 and PC645 photosynthetic antenna complexes. Front Mol Biosci 2023; 10:1268278. [PMID: 37790875 PMCID: PMC10544999 DOI: 10.3389/fmolb.2023.1268278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Protein scaffolds play a crucial role in tuning the light harvesting properties of photosynthetic pigment-protein complexes, influencing pigment-protein and pigment-pigment excitonic interactions. Here, we investigate the influence of thermal dynamic effects on the protein tuning mechanisms of phycocyanin PC645 and PC612 antenna complexes of cryptophyte algae, featuring closed or open quaternary structures. We employ a dual molecular dynamics (MD) strategy that combines extensive classical MD simulations with multiple short Born-Oppenheimer quantum/molecular mechanical (QM/MM) simulations to accurately account for both static and dynamic disorder effects. Additionally, we compare the results with an alternative protocol based on multiple QM/MM geometry optimizations of the pigments. Subsequently, we employ polarizable QM/MM calculations using time-dependent density functional theory (TD-DFT) to compute the excited states, and we adopt the full cumulant expansion (FCE) formalism to describe the absorption and circular dichroism spectra. Our findings indicate that thermal effects have only minor impacts on the energy ladder in PC612, despite its remarkable flexibility owing to an open quaternary structure. In striking contrast, thermal effects significantly influence the properties of PC645 due to the absence of a hydrogen bond controlling the twist of ring D in PCB β82 bilins, as well as the larger impact of fluctuations on the excited states of MBV pigments, which possess a higher conjugation length compared to other bilin types. Overall, the dual MD protocol combined with the FCE formalism yields excellent spectral properties for PC612 and PC645, and the resultant excitonic Hamiltonians pave the way for future investigations concerning the implications of open and closed quaternary structures on phycocyanin light harvesting properties.
Collapse
Affiliation(s)
- Beste Ozaydin
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
4
|
Kikuchi H. Redshifting and Blueshifting of β82 Chromophores in the Phycocyanin Hexamer of Porphyridium purpureum Phycobilisomes Due to Linker Proteins. Life (Basel) 2022; 12:1833. [PMID: 36362988 PMCID: PMC9694638 DOI: 10.3390/life12111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 09/10/2024] Open
Abstract
Phycobilisomes in cyanobacteria and red algae are large protein complexes that absorb light and transfer energy for use in photosynthesis. The light energy absorbed by chromophores binding to phycobiliproteins in the peripheral rods can be funneled to the core through chromophores at very high efficiency. The molecular mechanism of excitation energy transfer within a phycobilisome is an example of a higher and unique function in a living organism. However, the mechanism underlying the high efficiency remains unclear. Thus, this study was carried out as a step to resolve this mechanism theoretically. The three-dimensional structure of phycobilisomes containing the linker proteins of the red alga Porphyridium purpureum was determined by cryoelectron microscopy at 2.82 Å resolution in 2020. Using these data, the absorption wavelength of each β82 chromophore in the phycocyanin hexamer located next to the core was calculated using quantum chemical treatment, considering the electric effect from its surrounding phycocyanin proteins and two linker proteins. In addition to unaffected chromophores, chromophores that were redshifted and blueshifted under the electrical influence of the two linker proteins were found. Namely, the chromophore serving as the energy sink in the rod was determined.
Collapse
Affiliation(s)
- Hiroto Kikuchi
- Department of Physics, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023, Japan
| |
Collapse
|
5
|
Cp*Ir complex with mesobiliverdin ligand isolated from Thermoleptolyngbya sp. O-77. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Viayna A, Pinheiro S, Curutchet C, Luque FJ, Zamora WJ. Prediction of n-octanol/water partition coefficients and acidity constants (pK a) in the SAMPL7 blind challenge with the IEFPCM-MST model. J Comput Aided Mol Des 2021; 35:803-811. [PMID: 34244905 PMCID: PMC8295120 DOI: 10.1007/s10822-021-00394-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Within the scope of SAMPL7 challenge for predicting physical properties, the Integral Equation Formalism of the Miertus-Scrocco-Tomasi (IEFPCM/MST) continuum solvation model has been used for the blind prediction of n-octanol/water partition coefficients and acidity constants of a set of 22 and 20 sulfonamide-containing compounds, respectively. The log P and pKa were computed using the B3LPYP/6-31G(d) parametrized version of the IEFPCM/MST model. The performance of our method for partition coefficients yielded a root-mean square error of 1.03 (log P units), placing this method among the most accurate theoretical approaches in the comparison with both globally (rank 8th) and physical (rank 2nd) methods. On the other hand, the deviation between predicted and experimental pKa values was 1.32 log units, obtaining the second best-ranked submission. Though this highlights the reliability of the IEFPCM/MST model for predicting the partitioning and the acid dissociation constant of drug-like compounds compound, the results are discussed to identify potential weaknesses and improve the performance of the method.
Collapse
Affiliation(s)
- Antonio Viayna
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona (UB), Avda. Prat de La Riba, 171, 08921, Santa Coloma de Gramenet, Spain.
| | - Silvana Pinheiro
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Pará, 66075-110, Brazil
| | - Carles Curutchet
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona (UB), Avda. Prat de La Riba, 171, 08921, Santa Coloma de Gramenet, Spain
| | - William J Zamora
- School of Chemistry and Faculty of Pharmacy, University of Costa Rica, San Pedro, San José, Costa Rica.,Advanced Computing Lab (CNCA), National High Technology Center (CeNAT), Pavas, San José, Costa Rica
| |
Collapse
|
7
|
Staheli CF, Barney J, Clark TR, Bowles M, Jeppesen B, Oblinsky DG, Steffensen MB, Dean JC. Spectroscopic and Photophysical Investigation of Model Dipyrroles Common to Bilins: Exploring Natural Design for Steering Torsion to Divergent Functions. Front Chem 2021; 9:628852. [PMID: 33681146 PMCID: PMC7925881 DOI: 10.3389/fchem.2021.628852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Biliproteins are a unique class of photosynthetic proteins in their diverse, and at times, divergent biophysical function. The two contexts of photosynthetic light harvesting and photoreception demonstrate characteristically opposite criteria for success, with light harvesting demanding structurally-rigid chromophores which minimize excitation quenching, and photoreception requiring structural flexibility to enable conformational isomerization. The functional plasticity borne out in these two biological contexts is a consequence of the structural plasticity of the pigments utilized by biliproteins―linear tetrapyrroles, or bilins. In this work, the intrinsic flexibility of the bilin framework is investigated in a bottom-up fashion by reducing the active nuclear degrees of freedom through model dipyrrole subunits of the bilin core and terminus free of external protein interactions. Steady-state spectroscopy was carried out on the dipyrrole (DPY) and dipyrrinone (DPN) subunits free in solution to characterize their intrinsic spectroscopic properties including absorption strengths and nonradiative activity. Transient absorption (TA) spectroscopy was utilized to determine the mechanism and kinetics of nonradiative decay of the dipyrrole subunits, revealing dynamics dominated by rapid internal conversion with some Z→E isomerization observable in DPY. Computational analysis of the ground state conformational landscapes indicates enhanced complexity in the asymmetric terminal subunit, and the prediction was confirmed by heterogeneity of species and kinetics observed in TA. Taken together, the large oscillator strengths (f ∼ 0.6) of the dipyrrolic derivatives and chemically-efficient spectral tunability seen through the ∼100 nm difference in absorption spectra, validate Nature's "selection" of multi-pyrrole pigments for light capture applications. However, the rapid deactivation of the excited state via their natural torsional activity when free in solution would limit their effective biological function. Comparison with phytochrome and phycocyanin 645 crystal structures reveals binding motifs within the in vivo bilin environment that help to facilitate or inhibit specific inter-pyrrole twisting vital for protein operation.
Collapse
Affiliation(s)
- Clayton F Staheli
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Jaxon Barney
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States.,Department of Chemistry, The Pennsylvania State University, State College, PA, United States
| | - Taime R Clark
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Maxwell Bowles
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States.,Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Bridger Jeppesen
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Mackay B Steffensen
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Jacob C Dean
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| |
Collapse
|
8
|
Kikuchi H. Functional roles of the hexamer structure of C-phycocyanin revealed by calculation of absorption wavelength. FEBS Open Bio 2021; 11:164-172. [PMID: 33190413 PMCID: PMC7780113 DOI: 10.1002/2211-5463.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022] Open
Abstract
Cyanophyta-phycocyanin (C-PC) is the main constituent of the rod of phycobilisome (PBS), which is a highly ordered and large peripheral light-harvesting protein complex present on the cytoplasmic side of the thylakoid membrane in cyanobacteria and red algae. The C-PC monomer comprises two chains, α- and β-subunits, and aggregates to form ring-shaped trimers (αβ)3 with rotational symmetry. The ring-shaped trimer (αβ)3 is a structural block unit (SBU) that forms the rod of PBS. Two (αβ)3 SBUs are arranged in a face-to-face manner to form an (αβ)6 -hexamer. In this study, the electronic states of three phycocyanobilins, α84, β84, and β155 in C-phycocyanin, constituting the rod of the PBS, were calculated for both the trimer and hexamer models by considering the effect of the electrostatic field of protein moieties and water molecules. For the hexamer, the absorption wavelengths of α84, β84, and β155 were similar to those obtained experimentally; however, for the trimer, only the absorption wavelength of β155 shifted toward a shorter-wavelength. The nature of the hexamer structure as a hierarchical structure is revealed by considering the calculated absorption wavelength and energy transfer.
Collapse
Affiliation(s)
- Hiroto Kikuchi
- Department of PhysicsNippon Medical SchoolMusashinoJapan
| |
Collapse
|
9
|
Wahadoszamen M, Krüger TPJ, Ara AM, van Grondelle R, Gwizdala M. Charge transfer states in phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148187. [PMID: 32173383 DOI: 10.1016/j.bbabio.2020.148187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Phycobilisomes (PBs) absorb light and supply downstream photosynthetic processes with excitation energy in many cyanobacteria and algae. In response to a sudden increase in light intensity, excess excitation energy is photoprotectively dissipated in PBs by means of the orange carotenoid protein (OCP)-related mechanism or via a light-activated intrinsic decay channel. Recently, we have identified that both mechanisms are associated with far-red emission states. Here, we investigate the far-red states involved with the light-induced intrinsic mechanism by exploring the energy landscape and electro-optical properties of the pigments in PBs. While Stark spectroscopy showed that the far-red states in PBs exhibit a strong charge-transfer (CT) character at cryogenic temperatures, single molecule spectroscopy revealed that CT states should also be present at room temperature. Owing to the strong environmental sensitivity of CT states, the knowledge gained from this study may contribute to the design of a new generation of fluorescence markers.
Collapse
Affiliation(s)
- Md Wahadoszamen
- Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa
| | - Anjue Mane Ara
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Rienk van Grondelle
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa; Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
10
|
Corbella M, Cupellini L, Lipparini F, Scholes GD, Curutchet C. Spectral Variability in Phycocyanin Cryptophyte Antenna Complexes is Controlled by Changes in the α‐Polypeptide Chains. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marina Corbella
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry and Institute of Theoretical and Computational Chemistry (IQTC-UB), Faculty of Pharmacy and Food SciencesUniversity of Barcelona Av. Joan XXIII s/n 08028 Barcelona Spain
- Department of ChemistryUppsala University BMC Box 576 Uppsala S-751 23 Sweden
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa Via Risorgimento 35 56126 Pisa Italy
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa Via Risorgimento 35 56126 Pisa Italy
| | - Gregory D. Scholes
- Department of ChemistryPrinceton University Washington Road, Princeton New Jersey 08544 United States
| | - Carles Curutchet
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry and Institute of Theoretical and Computational Chemistry (IQTC-UB), Faculty of Pharmacy and Food SciencesUniversity of Barcelona Av. Joan XXIII s/n 08028 Barcelona Spain
| |
Collapse
|
11
|
Toa ZS, Dean JC, Scholes GD. Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 190:110-117. [DOI: 10.1016/j.jphotobiol.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 11/13/2018] [Indexed: 01/25/2023]
|