1
|
Singh R, Seo J, Ryu J, Choi JH. Unraveling the interplay of temperature with molecular aggregation and miscibility in TEA-water mixtures. Phys Chem Chem Phys 2024; 26:18970-18982. [PMID: 38953296 DOI: 10.1039/d4cp02238f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the phase diagram of binary liquid mixtures, a miscibility gap is found with the concomitant liquid-liquid phase separation, wherein temperature is a key parameter in modulating the phase behavior. This includes critical temperatures such as the lower critical solution temperature (LCST) and upper critical solution temperature (UCST). Using a comprehensive approach including molecular dynamics (MD) simulation, graph theoretical analysis and spatial inhomogeneity measurement in an LCST-type mixture, we attempt to establish the relationship between the molecular aggregation pattern and phase behavior in TEA-water mixtures. At lower temperatures of binary liquid mixtures, TEA molecules tend to aggregate while simultaneously interacting with water forming a homogeneous solution. As the temperature increases, these TEA aggregates tend to self-associate by minimizing the interaction with water, which facilitates formation of two distinct liquid phases in the binary liquid. The spatial distribution analysis also reveals that the TEA aggregates compatible with water promote uniform distribution of water molecules, maintaining a homogeneous solution, while the water-incompatible ones generate isolation of water H-bond aggregates, leading to liquid-liquid phase separation in the binary system. This current study on temperature-induced molecular aggregation behavior is anticipated to contribute to a critical understanding of the phase behavior in binary liquid mixtures, including UCST, LCST, and reentrant phase behavior.
Collapse
Affiliation(s)
- Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jonghyuk Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Clark JA, Douglas JF. Do Specific Ion Effects on Collective Relaxation Arise from Perturbation of Hydrogen-Bonding Network Structure? J Phys Chem B 2024; 128:6362-6375. [PMID: 38912895 PMCID: PMC11229691 DOI: 10.1021/acs.jpcb.4c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
The change in the transport properties (i.e., water diffusivity, shear viscosity, etc.) when adding salts to water has been used to classify ions as either being chaotropic or kosmotropic, a terminology based on the presumption that this phenomenon arises from respective breakdown or enhancement of the hydrogen-bonding network structure. Recent quasi-elastic neutron scattering measurements of the collective structural relaxation time, τC, in aqueous salt solutions were interpreted as confirming this proposed origin of ion effects on the dynamics of water. However, we find similar changes in τC in the same salt solutions based on molecular dynamics (MD) simulations using a coarse-grained water model in which no hydrogen bonding exists, challenging this conventional interpretation of mobility change resulting from the addition of salts to water. A thorough understanding of specific ion effects should be useful in diverse material manufacturing and biomedical applications, where these effects are prevalent, but poorly understood.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
3
|
Zhu J, Zhao Z, Li X, Wei Y. Structural and dynamical properties of concentrated alkali- and alkaline-earth metal chloride aqueous solutions. J Chem Phys 2023; 159:214503. [PMID: 38054516 DOI: 10.1063/5.0178123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Concentrated ionic aqueous electrolytes possess a diverse array of applications across various fields, particularly in the field of energy storage. Despite extensive examination, the intricate relationships and numerous physical mechanisms underpinning diverse phenomena remain incompletely understood. Molecular dynamics simulations are employed to probe the attributes of aqueous solutions containing LiCl, NaCl, KCl, MgCl2, and CaCl2, spanning various solute fractions. The primary emphasis of the simulations is on unraveling the intricate interplay between these attributes and the underlying physical mechanisms. The configurations of cation-Cl- and Cl--Cl- pairs within these solutions are disclosed. As the solute fraction increases, consistent trends manifest regardless of solute type: (i) the number of hydrogen bonds formed by the hydration water surrounding ions decreases, primarily attributed to the growing presence of counter ions in proximity to the hydration water; (ii) the hydration number of ions exhibits varying trends influenced by multiple factor; and (iii) the diffusion of ions slows down, attributed to the enhanced confinement and rebound of cations and Cl- ions from the surrounding atoms, concurrently coupled with the changes in ion vibration modes. In our analysis, we have, for the first time, clarified the reasons behind the slowing down of the diffusion of the ions with increasing solute fraction. Our research contributes to a better understanding and manipulation of the attributes of ionic aqueous solutions and may help designing high-performance electrolytes.
Collapse
Affiliation(s)
- Jianzhuo Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Zhuodan Zhao
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xingyuan Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yong Wei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Seo J, Choi S, Singh R, Choi JH. Spatial Inhomogeneity and Molecular Aggregation behavior in Aqueous Binary Liquid Mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Tyagi V, Debnath B, Patrike A, Ogale S, Patil SV. Fluorescence correlation spectroscopy based insights into diffusion in electrochemical energy systems. Methods Appl Fluoresc 2022; 10. [PMID: 35961301 DOI: 10.1088/2050-6120/ac896c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
Fluorescence Correlation Spectroscopy, a commonly used technique for measuring diffusion of biomolecules and tracer dyes in different solvents, is employed to characterise the local transport properties in battery electrolytes. Diffusion of ions, a major limiting factor in battery capacity and charging rates, depends on the local interactions and structuredness of the electrolytic species. Structuredness in the electrolyte results from typical solvation behaviour of diffusing ions/molecules leading to long-range interactions. In this work, we have used FCS to measure tracer diffusion of Coumarin 343 in a mixture of Ethylene Carbonate (EC) and Dimethyl Carbonate (DMC), commonly used as electrolyte solvent in Li-ion batteries. The measured diffusion is found to depend on lithium-ion concentrations. It is found that the addition of LiPF6 to an EC-DMC equimolar mixture slows down tracer diffusion significantly. Indeed, the bulk viscosity of the electrolyte added with LiPF6 salt varies with salt concentration. However, the change in bulk viscosity (global behaviour) at high ion concentrations does not match the one inferred from applying Stoke-Einstein's relation to the diffusion data (local behaviour). This indicates that the homogeneity of the electrolyte does not extend spatially to molecular scales around the diffusing tracer molecule. Measurements made on coin cells prepared with different concentrations of LiPF6 show battery performance limited at higher concentrations, characterized by specific capacity loss at faster charging cycles. This limitation is directly related to the local behaviour of the electrolyte as quantified by measurements of tracer diffusion, which slows down, which remarkably outweighs the advantage of high carrier densities.
Collapse
Affiliation(s)
- Viplove Tyagi
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, INDIA
| | - Bharati Debnath
- Physics , Indian Institute of Science education and Reseach Pune , Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, INDIA
| | - Apurva Patrike
- Physics , Indian Institute of Science education and Reseach Pune , Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, INDIA
| | - Satishchandra Ogale
- Physics, Indian Institute of Science Education Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, INDIA
| | - Shivprasad Vitthal Patil
- Physics , Indian Institute of Science education and Reseach Pune , Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, INDIA
| |
Collapse
|
6
|
Gong SY, Wang P, Wei ZY, Xu HG, Xu XL, Zheng WJ. Structures of (NaSCN) 2(H 2O) n -/0 (n = 0-7) and solvation induced ion pair separation: Gas phase anion photoelectron spectroscopy and theoretical calculations. J Chem Phys 2021; 154:204301. [PMID: 34241176 DOI: 10.1063/5.0049567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We studied (NaSCN)2(H2O)n - clusters in the gas phase using size-selected anion photoelectron spectroscopy. The photoelectron spectra and vertical detachment energies of (NaSCN)2(H2O)n - (n = 0-5) were obtained in the experiment. The structures of (NaSCN)2(H2O)n -/0 up to n = 7 were investigated with density functional theory calculations. Two series of peaks are observed in the spectra, indicating that two types of structures coexist, the high electron binding energy peaks correspond to the chain style structures, and the low electron binding energy peaks correspond to the Na-N-Na-N rhombic structures or their derivatives. For the (NaSCN)2(H2O)n - clusters at n = 3-5, the Na-N-Na-N rhombic structures are the dominant structures, the rhombic four-membered rings start to open at n = 4, and the solvent separated ion pair (SSIP) type of structures start to appear at n = 6. For the neutral (NaSCN)2(H2O)n clusters, the Na-N-Na-N rhombic isomers become the dominant starting at n = 3, and the SSIP type of structures start to appear at n = 5 and become dominant at n = 6. The structural evolution of (NaSCN)2(H2O)n -/0 (n = 0-7) confirms the possible existence of ionic clusters such as Na(SCN)2 - and Na2(SCN)+ in NaSCN aqueous solutions.
Collapse
Affiliation(s)
- Shi-Yan Gong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Mohanakumar S, Luettmer-Strathmann J, Wiegand S. Thermodiffusion of aqueous solutions of various potassium salts. J Chem Phys 2021; 154:084506. [DOI: 10.1063/5.0038039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Shilpa Mohanakumar
- IBI-4: Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Jutta Luettmer-Strathmann
- Department of Physics and Department of Chemistry, The University of Akron, Akron, Ohio 44325-4001, USA
| | - Simone Wiegand
- IBI-4: Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| |
Collapse
|
8
|
Honorio T, Benboudjema F, Bore T, Ferhat M, Vourc'h E. The pore solution of cement-based materials: structure and dynamics of water and ions from molecular simulations. Phys Chem Chem Phys 2019; 21:11111-11121. [PMID: 31094387 DOI: 10.1039/c9cp01577a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diffusion processes are crucial to the durability and confinement capacity of cement-based materials as well as property development. The liquid phase in cement-based materials is the pore solution, whose composition changes with age and is a function of the cement system composition. Water structure and dynamics are recognized to be affected by the presence of ions. Fundamental understanding of the physical processes underlying these changes can be critical in the elucidation of the physical origin of durability issues and in the development of new admixtures. Here, the structure and dynamics of water and ions present in pore solutions are studied using molecular dynamics simulations. Self-diffusion coefficients are computed for bulk solutions mimicking the complex composition of pore solutions. Specific ion effects on water dynamics are interpreted in terms of water reorientation time. The composition dependency of ion dynamics explains the evolution of the ionic conductivity of the pore solutions.
Collapse
Affiliation(s)
- Tulio Honorio
- LMT/ENS-Cachan/CNRS/Université Paris Saclay, Cachan, France.
| | | | - Thierry Bore
- School of Civil Engineering, The University of Queensland, Brisbane, Australia
| | - Mehdi Ferhat
- SATIE, UMR CNRS 8029, ENS Paris Saclay, Université Paris Saclay, Cachan, France
| | - Eric Vourc'h
- SATIE, UMR CNRS 8029, ENS Paris Saclay, Université Paris Saclay, Cachan, France
| |
Collapse
|
9
|
Graham TR, Semrouni D, Mamontov E, Ramirez-Cuesta AJ, Page K, Clark A, Schenter GK, Pearce CI, Stack AG, Wang HW. Coupled Multimodal Dynamics of Hydrogen-Containing Ion Networks in Water-Deficient, Sodium Hydroxide-Aluminate Solutions. J Phys Chem B 2018; 122:12097-12106. [DOI: 10.1021/acs.jpcb.8b09375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trent R. Graham
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David Semrouni
- Department of Chemistry and the Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | | | | | | | - Aurora Clark
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemistry and the Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | - Gregory K. Schenter
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Carolyn I. Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | | |
Collapse
|
10
|
Graham TR, Han KS, Dembowski M, Krzysko AJ, Zhang X, Hu J, Clark SB, Clark AE, Schenter GK, Pearce CI, Rosso KM. 27Al Pulsed Field Gradient, Diffusion–NMR Spectroscopy of Solvation Dynamics and Ion Pairing in Alkaline Aluminate Solutions. J Phys Chem B 2018; 122:10907-10912. [DOI: 10.1021/acs.jpcb.8b10145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Trent R. Graham
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Voiland School of Chemical and Biological Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Kee Sung Han
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mateusz Dembowski
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anthony J. Krzysko
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Xin Zhang
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jianzhi Hu
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sue B. Clark
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Aurora E. Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Gregory K. Schenter
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carolyn I. Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kevin M. Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|