1
|
Dai X, Wu L, Liu K, Ma F, Yang Y, Yu L, Sun J, Lu M. A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film. SENSORS (BASEL, SWITZERLAND) 2023; 23:6184. [PMID: 37448033 DOI: 10.3390/s23136184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
We present a straightforward approach to develop a high-detectivity silicon (Si) sub-bandgap near-infrared (NIR) photodetector (PD) based on textured Si/Au nanoparticle (NP) Schottky junctions coated with graphene film. This is a photovoltaic-type PD that operates at 0 V bias. The texturing of Si is to trap light for NIR absorption enhancement, and Schottky junctions facilitate sub-bandgap NIR absorption and internal photoemission. Both Au NPs and the texturing of Si were made in self-organized processes. Graphene offers additional pathways for hot electron transport and to increase photocurrent. Under 1319 nm illumination at room temperature, a responsivity of 3.9 mA/W and detectivity of 7.2 × 1010 cm × (Hz)1/2/W were obtained. Additionally, at -60 °C, the detectivity increased to 1.5 × 1011 cm × (Hz)1/2/W, with the dark current density reduced and responsivity unchanged. The result of this work demonstrates a facile method to create high-performance Si sub-bandgap NIR PDs for promising applications at ambient temperatures.
Collapse
Affiliation(s)
- Xiyuan Dai
- Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
| | - Li Wu
- Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
| | - Kaixin Liu
- Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
| | - Fengyang Ma
- Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
| | - Yanru Yang
- Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
| | - Liang Yu
- Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
| | - Jian Sun
- Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
- Yiwu Research Institute, Fudan University, Yiwu 322000, China
| | - Ming Lu
- Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
- Yiwu Research Institute, Fudan University, Yiwu 322000, China
| |
Collapse
|
2
|
Jiang S, Kim SH, Park CS, Lee WB, Lee SS. Multilevel Anti-Counterfeiting Based on Covert Structural Features Embedded in Femtosecond-Laser-Treated Gold Nanocluster/Graphene Hybrid Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39240-39248. [PMID: 35993967 DOI: 10.1021/acsami.2c10212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The conventional nanoscale anti-counterfeiting scheme, exhibiting limited encoding capacity, faces growing challenges of being falsified with the advent of advanced high-resolution equipment. In this study, we propose a multilevel anti-counterfeiting device based on a femtosecond laser (fs-laser) treated plasmonic gold nanocluster/graphene (AuNC/Gr) hybrid structure integrated with a resonant cavity. The covert structural features encoded in random colored patterns, optical reflection spectra, and Raman spectra constitute three classes of anti-counterfeiting signatures, which originate from the AuNC-covered Gr, which initiates plasmonic and thermal couplings. The attendant inverted thermal distribution is presumed to confine the structural features to the AuNC-Gr interface while leaving no detectable traces on the surface of AuNC/Gr even under advanced high-resolution equipment. Therefore, the proposed approach achieves multilevel anti-counterfeiting accomplishing physically unclonable functions in the form of random colored patterns, reflection spectra, and Raman spectra. As the first report for realizing remarkable optical modulation (i.e., random colored patterns) without any surface trace or damage via fs-laser-AuNC/Gr interaction, our study also discloses the outstanding performance of Gr in fs-laser-induced optothermoplasmonic lithography on near-percolation metal films. Simultaneously, the demonstrated fs-laser-processed plasmonic hybrid structure in conjunction with a resonant cavity is anticipated to expand the encoding capabilities for nanoscale anti-counterfeiting while avoiding the risk of being imitated because of the covert structural features.
Collapse
Affiliation(s)
- Shiru Jiang
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Su-Han Kim
- Nano Device Application Center, Kwangwoon University, Seoul 01897, South Korea
| | - Chul-Soon Park
- Nano Device Application Center, Kwangwoon University, Seoul 01897, South Korea
| | - Woo-Bin Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Shin Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea
| |
Collapse
|
3
|
Sridhar K, Inbaraj BS, Chen BH. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. CHEMOSPHERE 2022; 301:134702. [PMID: 35472615 DOI: 10.1016/j.chemosphere.2022.134702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Organic toxins are persistent chemicals of global concern capable of accumulating in environment and food. Surface enhanced Raman spectroscopy (SERS) is a promising technique that facilitates onsite detection of organic toxins. However, the fabrication of a SERS substrate is complicated and difficult to provide flexibility, fastness and cost-effectiveness. This study aims to develop a paper-based SERS method using grape skin-gold nanoparticles/graphene oxide (GE-AuNPs/GO) as SERS substrate and evaluate its efficiency with rhodamine 6G (Rh6G) as a model organic toxin and a real water and food contaminant. GE-AuNPs synthesized by green method using grape skin waste extract and GE-AuNPs/GO showed a surface plasmon resonance at 536 and 539 nm, particle size 18.6 and 19.5 nm, and zeta potential -44.6 and -59.7 mV, respectively. Paper-based SERS substrates were prepared by coating a hydrophobic thin-film of 30% polydimethylsiloxane solution in hexane on Whatman no. 1 filter paper, followed by drop-casting GE-AuNPs or GE-AuNPs/GO and drying. The SERS signals of Rh6G showed an enhancement factor of 5.8 × 104 for GE-AuNPs and 1.92 × 109 for GE-AuNPs/GO, implying that a combination of electromagnetic surface plasmon, charge transfer and molecular resonances may be responsible for a higher enhancement of signal by the latter. A low detection limit of 7.33 × 10-11 M in the linear range of 10-11-10-5 M was obtained for GE-AuNPs/GO, while the relative standard deviation of repeatability and reproducibility was 9.6 and 12.6%, respectively. Paper-based GE-AuNPs/GO SERS substrate was highly stable as <20% loss in efficiency was shown over a 60-day storage period. Application to real samples showed a high recovery of Rh6G from tap water (93.9-100.8%) as well as food samples such as red chilli powder (91.0-95.4%), red glutinous rice ball (96.6-98.3%) and tomato ketchup (98.9-102.3%) after QuEChERS extraction. Collectively, the developed paper-based GE-AuNPs/GO can be a potential substrate for sensitive onsite detection of rhodamine 6G by SERS method.
Collapse
Affiliation(s)
- Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
4
|
Chahal S, Bandyopadhyay A, Dash SP, Kumar P. Microwave Synthesized 2D Gold and Its 2D-2D Hybrids. J Phys Chem Lett 2022; 13:6487-6495. [PMID: 35819242 DOI: 10.1021/acs.jpclett.2c01540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Xenes, i.e., monoelemental two-dimensional atomic sheets, are promising for sensitive and ultrafast sensor applications owing to exceptional carrier mobility; however, most of them oxidize below 500 °C and therefore cannot be employed for high-temperature applications. 2D gold, an oxidation-resistant plasmonic Xene, is extremely promising. 2D gold was experimentally realized by both atomic layer deposition and chemical synthesis using sodium citrate. However, it is imperative to develop a new facile single-step method to synthesize 2D gold. Here, liquid-phase synthesis of 2D gold is demonstrated by microwave exposure to auric chloride dispersed in dimethylformamide. Microscopies (AFM and high-resolution TEM), spectroscopies (Raman, UV-vis, and X-ray photoelectron), and X-ray diffraction establish the formation of a hexagonal crystallographic phase for 2D gold. 2D-2D hybrids of 2D gold have also been synthesized and investigated for electronic/optoelectronic behaviors and SERS-based molecular sensing. DFT band structure calculation for 2D gold and its hybrids corroborates the experimental findings.
Collapse
Affiliation(s)
- Sumit Chahal
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna-801106, India
| | - Arkamita Bandyopadhyay
- The Bremen Center for Computational Materials Science (BCCMS), Universität Bremen, Am Fallturm 1, TAB Building, 28359 Bremen, Germany
| | - Saroj P Dash
- Department of Microtechnology and Nanoscience, Quantum Device Physics Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna-801106, India
- Global Innovative Center for Advanced Nanomaterials, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
5
|
Zhang Z, Lee Y, Haque MF, Leem J, Hsieh EY, Nam S. Plasmonic sensors based on graphene and graphene hybrid materials. NANO CONVERGENCE 2022; 9:28. [PMID: 35695997 PMCID: PMC9192873 DOI: 10.1186/s40580-022-00319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/26/2022] [Indexed: 05/07/2023]
Abstract
The past decade has witnessed a rapid growth of graphene plasmonics and their applications in different fields. Compared with conventional plasmonic materials, graphene enables highly confined plasmons with much longer lifetimes. Moreover, graphene plasmons work in an extended wavelength range, i.e., mid-infrared and terahertz regime, overlapping with the fingerprints of most organic and biomolecules, and have broadened their applications towards plasmonic biological and chemical sensors. In this review, we discuss intrinsic plasmonic properties of graphene and strategies both for tuning graphene plasmons as well as achieving higher performance by integrating graphene with plasmonic nanostructures. Next, we survey applications of graphene and graphene-hybrid materials in biosensors, chemical sensors, optical sensors, and sensors in other fields. Lastly, we conclude this review by providing a brief outlook and challenges of the field. Through this review, we aim to provide an overall picture of graphene plasmonic sensing and to suggest future trends of development of graphene plasmonics.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yeageun Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Juyoung Leem
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
- TomKat Center for Sustainable Energy, Stanford University, Stanford, CA, 94305, USA.
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - SungWoo Nam
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Tong P, Asif M, Ajmal M, Aziz A, Sun Y. A Multicomponent Polymer-Metal-Enzyme System as Electrochemical Biosensor for H2O2 Detection. Front Chem 2022; 10:874965. [PMID: 35572115 PMCID: PMC9099068 DOI: 10.3389/fchem.2022.874965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Herein, an Au nanoparticles-polydopamine-poly acrylic acid-graphene (Au NPs-PDA-PAA-graphene) multicomponent nanohybrid is fabricated by surface functionalization of graphene alongside extensive in-situ growth of Au nanoparticles. The as-obtained nanocomposite possesses good hydrophilicity, excellent biocompatibility and high biomolecules loading capacity, which acts as an ideal platform for enzyme modification. Considering this fact, Horseradish peroxidase is expressively immobilized upon Au NPs-PDA-PAA-graphene surface, in order to lay the foundations of a biosensor that is majorly based on enzymatic activity. The biosensor exhibits higher sensitivity towards the determination of H2O2 with linearity ranging from 0.1 μm upto 20 mm, and the limit of detection going down to 0.02 μm. Encouraged by its acceptable electrocatalytic performance, this multicomponent system can also be easily employed for carrying out the real-time tracking of H2O2 coming out of Macrophage cells. Therefore, this work designs an extraordinarily updated platform for biosensing related applications, and also presents a reliable platform for the direct detection of H2O2in vivo and in vitro, which show great potential in bioelectroanalytical chemistry, cellular biology, and pathophysiology.
Collapse
Affiliation(s)
- Pengfei Tong
- Henan Institute of Microsurgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Ajmal
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ayesha Aziz
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
- *Correspondence: Yimin Sun,
| |
Collapse
|
7
|
Du W, Miller L, Zhao F. Numerical Study of Graphene/Au/SiC Waveguide-Based Surface Plasmon Resonance Sensor. BIOSENSORS 2021; 11:bios11110455. [PMID: 34821671 PMCID: PMC8615979 DOI: 10.3390/bios11110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 05/12/2023]
Abstract
A new waveguide-based surface plasmon resonance (SPR) sensor was proposed and investigated by numerical simulation. The sensor consists of a graphene cover layer, a gold (Au) thin film, and a silicon carbide (SiC) waveguide layer on a silicon dioxide/silicon (SiO2/Si) substrate. The large bandgap energy of SiC allows the sensor to operate in the visible and near-infrared wavelength ranges, which effectively reduces the light absorption in water to improve the sensitivity. The sensor was characterized by comparing the shift of the resonance wavelength peak with change of the refractive index (RI), which mimics the change of analyte concentration in the sensing medium. The study showed that in the RI range of 1.33~1.36, the sensitivity was improved when the graphene layers were increased. With 10 graphene layers, a sensitivity of 2810 nm/RIU (refractive index unit) was achieved, corresponding to a 39.1% improvement in sensitivity compared to the Au/SiC sensor without graphene. These results demonstrate that the graphene/Au/SiC waveguide SPR sensor has a promising use in portable biosensors for chemical and biological sensing applications, such as detection of water contaminations (RI = 1.33~1.34), hepatitis B virus (HBV), and glucose (RI = 1.34~1.35), and plasma and white blood cells (RI = 1.35~1.36) for human health and disease diagnosis.
Collapse
Affiliation(s)
- Wei Du
- Department of Electrical Engineering and Physics, Wilkes University, Wilkes-Barre, PA 18766, USA;
- Correspondence: (W.D.); (F.Z.); Tel.: +1-570-408-4720 (W.D.); +1-360-546-9187 (F.Z.)
| | - Lucas Miller
- Department of Electrical Engineering and Physics, Wilkes University, Wilkes-Barre, PA 18766, USA;
| | - Feng Zhao
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
- Correspondence: (W.D.); (F.Z.); Tel.: +1-570-408-4720 (W.D.); +1-360-546-9187 (F.Z.)
| |
Collapse
|
8
|
Liu H, Gage TE, Singh P, Jaiswal A, Schaller RD, Tang J, Park ST, Gray SK, Arslan I. Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy. NANO LETTERS 2021; 21:5842-5849. [PMID: 34153185 DOI: 10.1021/acs.nanolett.1c01824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrids of graphene and metal plasmonic nanostructures are promising building blocks for applications in optoelectronics, surface-enhanced scattering, biosensing, and quantum information. An understanding of the coupling mechanism in these hybrid systems is of vital importance to its applications. Previous efforts in this field mainly focused on spectroscopic studies of strong coupling within the hybrids with no spatial resolution. Here we report direct imaging of the local plasmonic coupling between single Au nanocapsules and graphene step edges at the nanometer scale by photon-induced near-field electron microscopy in an ultrafast electron microscope for the first time. The proximity of a step in the graphene to the nanocapsule causes asymmetric surface charge density at the ends of the nanocapsules. Computational electromagnetic simulations confirm the experimental observations. The results reported here indicate that this hybrid system could be used to manipulate the localized electromagnetic field on the nanoscale, enabling promising future plasmonic devices.
Collapse
Affiliation(s)
- Haihua Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas E Gage
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Prem Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jau Tang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Sang Tae Park
- IDES, Inc. (a JEOL company), Pleasanton, California 94588, United States
| | - Stephen K Gray
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ilke Arslan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
9
|
Raghavan VS, O'Driscoll B, Bloor JM, Li B, Katare P, Sethi J, Gorthi SS, Jenkins D. Emerging graphene-based sensors for the detection of food adulterants and toxicants - A review. Food Chem 2021; 355:129547. [PMID: 33773454 DOI: 10.1016/j.foodchem.2021.129547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
The detection of food adulterants and toxicants can prevent a large variety of adverse health conditions for the global population. Through the process of rapid sensing enabled by deploying novel and robust sensors, the food industry can assist in the detection of adulterants and toxicants at trace levels. Sensor platforms which exploit graphene-based nanomaterials satisfy this requirement due to outstanding electrical, optical and thermal properties. The materials' facile conjugation with linkers and biomolecules along with the option for further enhancement using nanoparticles results in highly sensitive and selective sensing characteristics. This review highlights novel applications of graphene derivatives for detection covering three important approaches; optical, electrical (field-effect) and electrochemical sensing. Suitable graphene-based sensors for portable devices as point-of-need platforms are also presented. The future scope of these sensors is discussed to showcase how these emerging techniques will disrupt the food detection sector for years to come.
Collapse
Affiliation(s)
- Vikram Srinivasa Raghavan
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Benjamin O'Driscoll
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - J M Bloor
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - Bing Li
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| | - Prateek Katare
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Jagriti Sethi
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - Sai Siva Gorthi
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| |
Collapse
|
10
|
Rostami S, Mehdinia A, Niroumand R, Jabbari A. Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione. Anal Chim Acta 2020; 1120:11-23. [PMID: 32475387 DOI: 10.1016/j.aca.2020.04.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/31/2020] [Accepted: 04/25/2020] [Indexed: 01/17/2023]
Abstract
In the present study, a novel plasmonic sensing platform was proposed for sequential colorimetric detection of dopamine (DA) and glutathione (GSH) in human serum sample by taking advantage of plasmon hybridization in graphene nanoribbons/sliver nanoparticles (GNR/Ag NPs) hybrid. DA was detected based on etching strategy and morphology transition of label-free Ag NPs hybridized with GNR. As a result of the etching process, hexagonal Ag NPs were changed to smaller corner-truncated nanoparticles and a blue shift was observed in its plasmonic band, accompanied by the color change from green to red. Sequentially, GSH induced aggregation of Ag NPs which resulted in a decrease in absorption intensity of Ag NPs plasmonic band and a color change from red to gray. By employing GNR/Ag NPs hybrid as a sensitive colorimetric sensor, DA and GSH were successfully detected in low concentrations of 0.04 μM and 0.23 μM, respectively. The same experiment was carried out in the absence of GNR and the detection limits were obtained 0.46 and 1.2 μM for DA and GSH, respectively. These results confirmed the effective role of GNR on the sensitivity improvement of GNR/Ag NPs hybrid. The proposed simple and sensitive sensing approach offered a beneficial and promising platform for sequential detection of DA and GSH in the biological samples.
Collapse
Affiliation(s)
- Simindokht Rostami
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Mehdinia
- Department of Marine Living Science, Ocean Sciences Research Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
| | - Ramin Niroumand
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Jabbari
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Hernández-Vázquez EE, Munoz F, López-Moreno S, Morán-López JL. First-principles study of Ni adatom migration on graphene with vacancies. RSC Adv 2019; 9:18823-18834. [PMID: 35516868 PMCID: PMC9065389 DOI: 10.1039/c9ra00999j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/01/2019] [Indexed: 12/02/2022] Open
Abstract
A theoretical study based on first-principles calculations about the interaction and diffusion of Ni atoms on pristine graphene and graphene with a single vacancy is presented. In the first case, we explored the structural changes due to the adsorption of Ni on graphene and the effects on the electronic structure. In the case of graphene with a vacancy, we analyzed the impact of the adsorbed Ni atom on the distortion of the graphene structure and how it depends on the distance from the graphene defect. In the analysis, we observed the changes in the electron localization function and the charge density. By knowing the interaction map of Ni with graphene, and the structural changes of the network, we performed energy barrier calculations within the climbing image nudged elastic band methodology to study the nickel diffusion. Finally, we explored how the vacancy and structural distortions affect the minimum energy paths and the saddle points for nickel moving away, around, and towards the vacancy.
Collapse
Affiliation(s)
- E E Hernández-Vázquez
- División de Materiales Avanzados, IPICYT Camino a la Presa San José 2055 San Luis Potosí S.L.P. 78216 Mexico
| | - F Munoz
- Departamento de Física, Facultad de Ciencias, Universidad de Chile Santiago Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA) Santiago Chile
| | - S López-Moreno
- CONACYT - División de Materiales Avanzados, IPICYT Camino a la Presa San José 2055 San Luis Potosí S.L.P. 78216 Mexico
| | - J L Morán-López
- División de Materiales Avanzados, IPICYT Camino a la Presa San José 2055 San Luis Potosí S.L.P. 78216 Mexico
| |
Collapse
|
12
|
A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance. SENSORS 2019; 19:s19040862. [PMID: 30791430 PMCID: PMC6412767 DOI: 10.3390/s19040862] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023]
Abstract
Localized Surface Plasmon Resonance (LSPR) sensors have potential applications in essential and important areas such as bio-sensor technology, especially in medical applications and gas sensors in environmental monitoring applications. Figure of Merit (FOM) and Sensitivity (S) measurements are two ways to assess the performance of an LSPR sensor. However, LSPR sensors suffer low FOM compared to the conventional Surface Plasmon Resonance (SPR) sensor due to high losses resulting from radiative damping of LSPs waves. Different methodologies have been utilized to enhance the performance of LSPR sensors, including various geometrical and material parameters, plasmonic wave coupling from different structures, and integration of noble metals with graphene, which is the focus of this report. Recent studies of metal-graphene hybrid plasmonic systems have shown its capability of promoting the performance of the LSPR sensor to a level that enhances its chance for commercialization. In this review, fundamental physics, the operation principle, and performance assessment of the LSPR sensor are presented followed by a discussion of plasmonic materials and a summary of methods used to optimize the sensor’s performance. A focused review on metal-graphene hybrid nanostructure and a discussion of its role in promoting the performance of the LSPR sensor follow.
Collapse
|
13
|
Ingrosso C, Corricelli M, Bettazzi F, Konstantinidou E, Bianco GV, Depalo N, Striccoli M, Agostiano A, Curri ML, Palchetti I. Au nanoparticle in situ decorated RGO nanocomposites for highly sensitive electrochemical genosensors. J Mater Chem B 2019; 7:768-777. [DOI: 10.1039/c8tb02514b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel hybrid nanocomposite formed by RGO flakes, surface functionalized by 1-pyrene carboxylic acid (PCA), densely and uniformly in situ decorated by Au NPs, is reported, for miRNA detection.
Collapse
Affiliation(s)
- Chiara Ingrosso
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Michela Corricelli
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Francesca Bettazzi
- Dep. of Chemistry Ugo Schiff
- Università degli Studi di Firenze
- Firenze
- Italy
| | | | | | - Nicoletta Depalo
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | | | - Angela Agostiano
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - M. Lucia Curri
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Ilaria Palchetti
- Dep. of Chemistry Ugo Schiff
- Università degli Studi di Firenze
- Firenze
- Italy
| |
Collapse
|