1
|
Pavan C, Santalucia R, Escolano-Casado G, Ugliengo P, Mino L, Turci F. Physico-Chemical Approaches to Investigate Surface Hydroxyls as Determinants of Molecular Initiating Events in Oxide Particle Toxicity. Int J Mol Sci 2023; 24:11482. [PMID: 37511241 PMCID: PMC10380507 DOI: 10.3390/ijms241411482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Rosangela Santalucia
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Piero Ugliengo
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Francesco Turci
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| |
Collapse
|
2
|
He P, Yang G, Zhu D, Kong H, Corrales-Ureña YR, Colombi Ciacchi L, Wei G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J Nanobiotechnology 2022; 20:483. [PMID: 36384717 PMCID: PMC9670580 DOI: 10.1186/s12951-022-01691-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nanomaterial-based phototherapy has become an important research direction for cancer therapy, but it still to face some obstacles, such as the toxic side effects and low target specificity. The biomimetic synthesis of nanomaterials using biomolecules is a potential strategy to improve photothermal therapy (PTT) and photodynamic therapy (PDT) techniques due to their endowed biocompatibility, degradability, low toxicity, and specific targeting. This review presents recent advances in the biomolecule-mimetic synthesis of functional nanomaterials for PTT and PDT of cancers. First, we introduce four biomimetic synthesis methods via some case studies and discuss the advantages of each method. Then, we introduce the synthesis of nanomaterials using some biomolecules such as DNA, RNA, protein, peptide, polydopamine, and others, and discuss in detail how to regulate the structure and functions of the obtained biomimetic nanomaterials. Finally, potential applications of biomimetic nanomaterials for both PTT and PDT of cancers are demonstrated and discussed. We believe that this work is valuable for readers to understand the mechanisms of biomimetic synthesis and nanomaterial-based phototherapy techniques, and will contribute to bridging nanotechnology and biomedicine to realize novel highly effective cancer therapies.
Collapse
Affiliation(s)
- Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yendry Regina Corrales-Ureña
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany.
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
3
|
Weidner T, Castner DG. Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:389-412. [PMID: 33979545 PMCID: PMC8522203 DOI: 10.1146/annurev-anchem-091520-010206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5-20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.
Collapse
Affiliation(s)
- Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark;
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
4
|
Alamdari S, Roeters SJ, Golbek TW, Schmüser L, Weidner T, Pfaendtner J. Orientation and Conformation of Proteins at the Air-Water Interface Determined from Integrative Molecular Dynamics Simulations and Sum Frequency Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11855-11865. [PMID: 32921055 DOI: 10.1021/acs.langmuir.0c01881] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the assembly of proteins at the air-water interface (AWI) informs the formation of protein films, emulsion properties, and protein aggregation. Determination of protein conformation and orientation at an interface is difficult to resolve with a single experimental or simulation technique alone. To date, the interfacial structure of even one of the most widely studied proteins, lysozyme, at the AWI remains unresolved. In this study, molecular dynamics (MD) simulations are used to determine if the protein adopts a side-on, head-on, or axial orientation at the AWI with two different forcefields, GROMOS-53a6 + SPC/E and a99SB-disp + TIP4P-D. Vibrational sum frequency generation (SFG) spectroscopy experiments and spectral SFG calculations validate consistency between the structure determined from MD and experiments. Overall, we show with strong agreement that lysozyme adopts an axial conformation at pH 7. Further, we provide molecular-level insight as to how pH influences the binding domains of lysozyme resulting in side-on adsorption near the isoelectric point of the lysozyme.
Collapse
Affiliation(s)
- Sarah Alamdari
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Thaddeus W Golbek
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Lars Schmüser
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| |
Collapse
|
5
|
A novel approach to calculate protein adsorption isotherms by molecular dynamics simulations. J Chromatogr A 2020; 1620:460940. [PMID: 32183982 DOI: 10.1016/j.chroma.2020.460940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/21/2022]
Abstract
Protein adsorption plays a role in many fields, where in some it is desirable to maximize the amount adsorbed, in others it is important to avoid protein adsorption altogether. Therefore, theoretical methods are needed for a better understanding of the underlying processes and for the prediction of adsorption quantities. In this study, we present a proof-of-concept that the calculation of protein adsorption isotherms by molecular dynamics (MD) simulations is possible using the steric mass action (SMA) theory. Here we are investigating the adsorption of bovine/human serum albumin (BSA/HSA) and hemoglobin (bHb) on Q Sepharose FF. Protein adsorption isotherms were experimentally determined and modeled. Free energy profiles of protein adsorption were calculated by MD simulations to determine the Henry isotherms as a first step. Although each simulation contained only one protein, notably the calculated isotherms are in reasonably good agreement with the experimental isotherms. Hence, we could show that MD data can lead to protein adsorption data in good agreement with experimental data. The results were critically discussed and requirements for future applications are identified.
Collapse
|
6
|
|
7
|
Settanni G, Schäfer T, Muhl C, Barz M, Schmid F. Poly-sarcosine and Poly(Ethylene-Glycol) Interactions with Proteins Investigated Using Molecular Dynamics Simulations. Comput Struct Biotechnol J 2018; 16:543-550. [PMID: 30524669 PMCID: PMC6259037 DOI: 10.1016/j.csbj.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
Nanoparticles coated with hydrophilic polymers often show a reduction in unspecific interactions with the biological environment, which improves their biocompatibility. The molecular determinants of this reduction are not very well understood yet, and their knowledge may help improving nanoparticle design. Here we address, using molecular dynamics simulations, the interactions of human serum albumin, the most abundant serum protein, with two promising hydrophilic polymers used for the coating of therapeutic nanoparticles, poly(ethylene-glycol) and poly-sarcosine. By simulating the protein immersed in a polymer-water mixture, we show that the two polymers have a very similar affinity for the protein surface, both in terms of the amount of polymer adsorbed and also in terms of the type of amino acids mainly involved in the interactions. We further analyze the kinetics of adsorption and how it affects the polymer conformations. Minor differences between the polymers are observed in the thickness of the adsorption layer, that are related to the different degree of flexibility of the two molecules. In comparison poly-alanine, an isomer of poly-sarcosine known to self-aggregate and induce protein aggregation, shows a significantly larger affinity for the protein surface than PEG and PSar, which we show to be related not to a different patterns of interactions with the protein surface, but to the different way the polymer interacts with water.
Collapse
Affiliation(s)
| | - Timo Schäfer
- Institut für Physik, Johannes Gutenberg University, Mainz, Germany
| | - Christian Muhl
- Institut für Organische Chemie, Johannes Gutenberg University, Mainz, Germany
| | - Matthias Barz
- Institut für Organische Chemie, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|