1
|
Hix MA, Walker AR. AutoParams: An Automated Web-Based Tool To Generate Force Field Parameters for Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:6293-6301. [PMID: 37773638 DOI: 10.1021/acs.jcim.3c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Many research questions benefit from molecular dynamics simulations to observe the motions and conformations of molecules over time, which rely on force fields that describe sets of common molecules by category. With the increase of importance for large data sets used in machine learning and growing computational efficiency, the ability to rapidly create large numbers of force field inputs is of high importance. Unusual molecules, such as nucleotide analogues, functionalized carbohydrates, and modified amino acids, are difficult to describe consistently using standard force fields, requiring the development of custom parameters for each unique molecule. While these parameters may be created by individual users, the process can become time-consuming or may introduce errors that may not be immediately apparent. We present an open-source automated parameter generation service, AutoParams, which requires minimal input from the user and creates useful Amber force field parameter sets for most molecules, particularly those that combine molecular types (e.g., a carbohydrate functionalized with a benzene). We include hierarchical atom-typing logic that makes it straightforward to expand with additional force fields and settings, and options for creating monomers in polymers, such as functionalized amino acids. It can be straightforwardly linked to any charge generation program and currently has interfaces to Psi4, PsiRESP, and TeraChem. It is open source and is available via GitHub. It includes error checking and testing protocols to ensure the parameters will be sufficient for subsequent molecular dynamics simulations and streamlines the creation of force field databases.
Collapse
Affiliation(s)
- Mark A Hix
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, United States
| | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, United States
| |
Collapse
|
2
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL, Fischer K, Blanchard SC, Sanbonmatsu KY. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res 2022; 50:8302-8320. [PMID: 35808938 DOI: 10.1093/nar/gkac597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.
Collapse
Affiliation(s)
- Wataru Nishima
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Mikael Holm
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily J Rundlet
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jose L Alejo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kara Fischer
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
4
|
Lee Y, Cho Y, Park EY, Park S, Hwang KH, Han J. One-Step Polymerase Chain Reaction-Free Nanowire-Based Plasma Cell-Free DNA Assay to Detect EML4-ALK Fusion and to Monitor Resistance in Lung Cancer. Oncologist 2021; 26:e1683-e1692. [PMID: 34272914 PMCID: PMC8488792 DOI: 10.1002/onco.13902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Next-generation sequencing has mostly been used for genotyping cell-free DNA (cfDNA) in plasma. However, this assay has several clinical limitations. We evaluated the clinical utility of a novel polymerase chain reaction-free nanowire (NW)-based plasma cfDNA assay for detecting ALK fusion and mutations. PATIENTS, MATERIALS, AND METHODS We consecutively enrolled 99 patients with advanced non-small cell lung cancer undergoing a fluorescence in situ hybridization (FISH) test for ALK fusion; ALK-positive (n = 36). The NW-based assay was performed using 50-100 μL of plasma collected at pretreatment and every 8 weeks during ALK inhibitor treatment. RESULTS There was high concordance between the NW-based assay and the FISH test for identification of ALK fusion (94.9% with a kappa coefficient value of 0.892, 95% confidence interval [CI], 0.799-0.984). There was no difference in the response rate to the first anaplastic lymphoma kinase inhibitor between the ALK-positive patients identified by the NW-based assay and by the FISH test (73.5% vs. 72.2%, p = .931). In the ALK variant analysis, variants 1 and 3 subgroups were detected in 27 (75.0%) and 8 (22.2%) patients, respectively. Among 24 patients treated with crizotinib, variant 3 subgroup was associated with worse median overall survival than variant 1 subgroup (36.5 months; 95% CI, 0.09-87.6 vs. 19.8 months; 95% CI, 9.9-not reached, p = .004]. A serial assessment identified that ALK L1196M resistance mutation emerged before radiologic progression during crizotinib treatment. CONCLUSION The newly developed simple NW-based cfDNA assay may be clinically applicable for rapid diagnosis of ALK fusion with its variant forms and early detection of resistance. IMPLICATIONS FOR PRACTICE The authors developed a novel one-step polymerase chain reaction-free nanowire (NW)-based plasma cell-free DNA (cfDNA) assay. This study evaluated the clinical utility of this novel method for the diagnosis of EML4-ALK fusion in advanced non-small cell lung cancer (NSCLC). The NW-based assay and FISH test showed high concordance rate in 99 patients with advanced NSCLC. Serial cfDNA assessment demonstrated this method provided early detection of resistance before radiologic progression during crizotinib treatment. Taken together, plasma cfDNA genotyping by the NW-based cfDNA assay may be useful for the rapid diagnosis of ALK fusion, classifying variants, and early detection of resistance.
Collapse
Affiliation(s)
- Youngjoo Lee
- Center for Lung Cancer, National Cancer Center KoreaGoyangRepublic of Korea
| | - Youngnam Cho
- Translational Research Branch, National Cancer Center KoreaGoyangRepublic of Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and PolicyGoyangRepublic of Korea
- Genopsy Inc.SeoulRepublic of Korea
| | - Eun Young Park
- Biostatics Collaboration Team, National Cancer Center KoreaGoyangRepublic of Korea
| | - Seong‐Yun Park
- Department of Pathology, National Cancer Center KoreaGoyangRepublic of Korea
| | - Kum Hui Hwang
- Center for Lung Cancer, National Cancer Center KoreaGoyangRepublic of Korea
| | - Ji‐Youn Han
- Center for Lung Cancer, National Cancer Center KoreaGoyangRepublic of Korea
| |
Collapse
|
5
|
Luo G, Zhang J, Yang M, He H, Huang Z. Selenium atom on phosphate enhances specificity and sensitivity of DNA polymerization and detection. J Mater Chem B 2021; 9:5636-5644. [PMID: 34196647 DOI: 10.1039/d1tb00428j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA polymerization is of high specificity in vivo. However, its specificity is much lower in vitro, which limits advanced applications of DNA polymerization in ultrasensitive nucleic acid detection. Herein, we report a unique mechanism of single selenium-atom modified dNTP (dNTPαSe) to enhance polymerization specificity. We have found that both dNTPαSe (approximately 660 fold) and Se-DNA (approximately 2.8 fold) have lower binding affinity to DNA polymerase than canonical ones, and the Se-DNA duplex has much lower melting-temperature (Tm) than the corresponding canonical DNA duplex. The reduced affinity and Tm can destabilize the substrate-primer-template-enzyme assembly, thereby largely slowing down the mismatch of DNA polymerization and enhancing the amplification specificity and in turn detection sensitivity. Furthermore, the Se-strategy enables us to develop the selenium enhanced specific isothermal amplification (SEA) for nucleic acid detection with high specificity and sensitivity (up to detection of single-digit copies), allowing convenient detection of clinical HPV and COVID-19 viruses in the low-copy number. Clearly, we have discovered the exciting mechanism for enhancing DNA polymerization accuracy, amplification specificity and detection sensitivity by SEA, up to two orders of magnitude higher.
Collapse
Affiliation(s)
- Guangcheng Luo
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China. and Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jun Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Mei Yang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hongfei He
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China. and SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Girodat D, Pati AK, Terry DS, Blanchard SC, Sanbonmatsu KY. Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein. PLoS Comput Biol 2020; 16:e1008293. [PMID: 33151943 PMCID: PMC7643941 DOI: 10.1371/journal.pcbi.1008293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular Dynamics (MD) simulations seek to provide atomic-level insights into conformationally dynamic biological systems at experimentally relevant time resolutions, such as those afforded by single-molecule fluorescence measurements. However, limitations in the time scales of MD simulations and the time resolution of single-molecule measurements have challenged efforts to obtain overlapping temporal regimes required for close quantitative comparisons. Achieving such overlap has the potential to provide novel theories, hypotheses, and interpretations that can inform idealized experimental designs that maximize the detection of the desired reaction coordinate. Here, we report MD simulations at time scales overlapping with in vitro single-molecule Förster (fluorescence) resonance energy transfer (smFRET) measurements of the amino acid binding protein LIV-BPSS at sub-millisecond resolution. Computationally efficient all-atom structure-based simulations, calibrated against explicit solvent simulations, were employed for sampling multiple cycles of LIV-BPSS clamshell-like conformational changes on the time scale of seconds, examining the relationship between these events and those observed by smFRET. The MD simulations agree with the smFRET measurements and provide valuable information on local dynamics of fluorophores at their sites of attachment on LIV-BPSS and the correlations between fluorophore motions and large-scale conformational changes between LIV-BPSS domains. We further utilize the MD simulations to inform the interpretation of smFRET data, including Förster radius (R0) and fluorophore orientation factor (κ2) determinations. The approach we describe can be readily extended to distinct biochemical systems, allowing for the interpretation of any FRET system conjugated to protein or ribonucleoprotein complexes, including those with more conformational processes, as well as those implementing multi-color smFRET. Förster (fluorescence) resonance energy transfer (FRET) has been used extensively by biophysicists as a molecular-scale ruler that yields fundamental structural and kinetic insights into transient processes including complex formation and conformational rearrangements required for biological function. FRET techniques require the identification of informative fluorophore labeling sites, spaced at defined distances to inform on a reaction coordinate of interest and consideration of noise sources that have the potential to obscure quantitative interpretations. Here, we describe an approach to leverage advancements in computationally efficient all-atom structure-based molecular dynamics simulations in which structural dynamics observed via FRET can be interpreted in full atomistic detail on commensurate time scales. We demonstrate the potential of this approach using a model FRET system, the amino acid binding protein LIV-BPSS conjugated to self-healing organic fluorophores. LIV-BPSS exhibits large scale, sub-millisecond clamshell-like conformational changes between open and closed conformations associated with ligand unbinding and binding, respectively. Our findings inform on the molecular basis of the dynamics observed by smFRET and on strategies to optimize fluorophore labeling sites, the manner of fluorophore attachment, and fluorophore composition.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.,New Mexico Consortium, Los Alamos, New Mexico, United States of America
| |
Collapse
|
8
|
Dodd T, Botto M, Paul F, Fernandez-Leiro R, Lamers MH, Ivanov I. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path. Nat Commun 2020; 11:5379. [PMID: 33097731 PMCID: PMC7584608 DOI: 10.1038/s41467-020-19165-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Proofreading by replicative DNA polymerases is a fundamental mechanism ensuring DNA replication fidelity. In proofreading, mis-incorporated nucleotides are excised through the 3'-5' exonuclease activity of the DNA polymerase holoenzyme. The exonuclease site is distal from the polymerization site, imposing stringent structural and kinetic requirements for efficient primer strand transfer. Yet, the molecular mechanism of this transfer is not known. Here we employ molecular simulations using recent cryo-EM structures and biochemical analyses to delineate an optimal free energy path connecting the polymerization and exonuclease states of E. coli replicative DNA polymerase Pol III. We identify structures for all intermediates, in which the transitioning primer strand is stabilized by conserved Pol III residues along the fingers, thumb and exonuclease domains. We demonstrate switching kinetics on a tens of milliseconds timescale and unveil a complete pol-to-exo switching mechanism, validated by targeted mutational experiments.
Collapse
Affiliation(s)
- Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Margherita Botto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabian Paul
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Chiuchiú D, Tu Y, Pigolotti S. Error-Speed Correlations in Biopolymer Synthesis. PHYSICAL REVIEW LETTERS 2019; 123:038101. [PMID: 31386470 PMCID: PMC7402413 DOI: 10.1103/physrevlett.123.038101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 06/10/2023]
Abstract
Synthesis of biopolymers such as DNA, RNA, and proteins are biophysical processes aided by enzymes. The performance of these enzymes is usually characterized in terms of their average error rate and speed. However, because of thermal fluctuations in these single-molecule processes, both error and speed are inherently stochastic quantities. In this Letter, we study fluctuations of error and speed in biopolymer synthesis and show that they are in general correlated. This means that, under equal conditions, polymers that are synthesized faster due to a fluctuation tend to have either better or worse errors than the average. The error-correction mechanism implemented by the enzyme determines which of the two cases holds. For example, discrimination in the forward reaction rates tends to grant smaller errors to polymers with faster synthesis. The opposite occurs for discrimination in monomer rejection rates. Our results provide an experimentally feasible way to identify error-correction mechanisms by measuring the error-speed correlations.
Collapse
Affiliation(s)
- Davide Chiuchiú
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yuhai Tu
- IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
10
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|