1
|
Uliana AA, Pezoulas ER, Zakaria NI, Johnson AS, Smith A, Lu Y, Shaidu Y, Velasquez EO, Jackson MN, Blum M, Neaton JB, Yano J, Long JR. Removal of Chromium and Arsenic from Water Using Polyol-Functionalized Porous Aromatic Frameworks. J Am Chem Soc 2024; 146:23831-23841. [PMID: 39149836 PMCID: PMC11363125 DOI: 10.1021/jacs.4c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Chromium and arsenic are two of the most problematic water pollutants due to their high toxicity and prevalence in various water streams. While adsorption and ion-exchange processes have been applied for the efficient removal of numerous toxic contaminants, including heavy metals, from water, these technologies display relatively low overall performances and stabilities for the remediation of chromium and arsenic oxyanions. This work presents the use of polyol-functionalized porous aromatic framework (PAF) adsorbent materials that use chelation, ion-exchange, redox activity, and hydrogen-bonding interactions for the highly selective capture of chromium and arsenic from water. The chromium and arsenic binding mechanisms within these materials are probed using an array of characterization techniques, including X-ray absorption and X-ray photoelectron spectroscopies. Adsorption studies reveal that the functionalized porous aromatic frameworks (PAFs) achieve selective, near-instantaneous (reaching equilibrium capacity within 10 s), and high-capacity (2.5 mmol/g) binding performances owing to their targeted chemistries, high porosities, and high functional group loadings. Cycling tests further demonstrate that the top-performing PAF material can be recycled using mild acid and base washes without any measurable performance loss over at least ten adsorption-desorption cycles. Finally, we establish chemical design principles enabling the selective removal of chromium, arsenic, and boron from water. To achieve this, we show that PAFs appended with analogous binding groups exhibit differences in adsorption behavior, revealing the importance of binding group length and chemical identity.
Collapse
Affiliation(s)
- Adam A. Uliana
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ethan R. Pezoulas
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - N. Isaac Zakaria
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Arun S. Johnson
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alex Smith
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Yubing Lu
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yusuf Shaidu
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Ever O. Velasquez
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Megan N. Jackson
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Monika Blum
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey B. Neaton
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Kavli Energy
NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Pereira F, López R, Suárez D, Aller A. pH-dependent structural changes of arsenic oxoacids in solution and solid phase: Raman spectrometry and computational studies. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Binding of Arsenic by Common Functional Groups: An Experimental and Quantum-Mechanical Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Arsenic is a well-known contaminant present in different environmental compartments and in human organs and tissues. Inorganic As(III) represents one of the most dangerous arsenic forms. Its toxicity is attributed to its great affinity with the thiol groups of proteins. Considering the simultaneous presence in all environmental compartments of other common functional groups, we here present a study aimed at evaluating their contribution to the As(III) complexation. As(III) interactions with four (from di- to hexa-) carboxylic acids, five (from mono- to penta-) amines, and four amino acids were evaluated via experimental methods and, in simplified systems, also by quantum-mechanical calculations. Data were analyzed also with respect to those previously reported for mixed thiol-carboxylic ligands to evaluate the contribution of each functional group (-SH, -COOH, and -NH2) toward the As(III) complexation. Formation constants of As(III) complex species were experimentally determined, and data were analyzed for each class of ligand. An empirical relationship was reported, taking into account the contribution of each functional group to the complexation process and allowing for a rough estimate of the stability of species in systems where As(III) and thiol, carboxylic, or amino groups are involved. Quantum-mechanical calculations allowed for the evaluation and the characterization of the main chelation reactions of As(III). The potential competitive effects of the investigated groups were evaluated using cysteine, a prototypical species possessing all the functional groups under investigation. Results confirm the higher binding capabilities of the thiol group under different circumstances, but also indicate the concrete possibility of the simultaneous binding of As(III) by the thiol and the carboxylic groups.
Collapse
|
4
|
Darma A, Yang J, Zandi P, Liu J, Możdżeń K, Xia X, Sani A, Wang Y, Schnug E. Significance of Shewanella Species for the Phytoavailability and Toxicity of Arsenic-A Review. BIOLOGY 2022; 11:biology11030472. [PMID: 35336844 PMCID: PMC8944983 DOI: 10.3390/biology11030472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary The availability of some toxic heavy metals, such as arsenic (As), is related to increased human and natural activities. This type of metal availability in the environment is associated with various health and environmental issues. Such problems may arise due to direct contact with or consumption of plant products containing this metal in some of their parts. A microbial approach that employs a group of bacteria (Shewanella species) is proposed to reduce the negative consequences of the availability of this metal (As) in the environment. This innovative strategy can reduce As mobility, its spread, and uptake by plants in the environment. The benefits of this approach include its low cost and the possibility of not exposing other components of the environment to unfavourable consequences. Abstract The distribution of arsenic continues due to natural and anthropogenic activities, with varying degrees of impact on plants, animals, and the entire ecosystem. Interactions between iron (Fe) oxides, bacteria, and arsenic are significantly linked to changes in the mobility, toxicity, and availability of arsenic species in aquatic and terrestrial habitats. As a result of these changes, toxic As species become available, posing a range of threats to the entire ecosystem. This review elaborates on arsenic toxicity, the mechanisms of its bioavailability, and selected remediation strategies. The article further describes how the detoxification and methylation mechanisms used by Shewanella species could serve as a potential tool for decreasing phytoavailable As and lessening its contamination in the environment. If taken into account, this approach will provide a globally sustainable and cost-effective strategy for As remediation and more information to the literature on the unique role of this bacterial species in As remediation as opposed to conventional perception of its role as a mobiliser of As.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano 700006, Nigeria;
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
- Correspondence: (J.Y.); (E.S.); Tel.: +86-010-82105996 (J.Y.)
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin 644600, China;
| | - Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China;
| | - Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Krakow, Poland;
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
| | - Ali Sani
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano 700006, Nigeria;
| | - Yihao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
| | - Ewald Schnug
- Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany
- Correspondence: (J.Y.); (E.S.); Tel.: +86-010-82105996 (J.Y.)
| |
Collapse
|
5
|
Tao D, Shi C, Guo W, Deng Y, Peng Y, He Y, Lam PKS, He Y, Zhang K. Determination of As species distribution and variation with time in extracted groundwater samples by on-site species separation method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151913. [PMID: 34863753 DOI: 10.1016/j.scitotenv.2021.151913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
It is challenging to dependably keep the native distribution of arsenic (As) species before sample analysis in the laboratory. The on-site separation method can avoid sample contamination and species change in the process of sample collection and transportation from field to laboratory. In this study, As species distribution and variation of the extracted groundwater was first analyzed by an on-site species separation method in Jianghan Plain, China. Our study illustrated that: 1) high-As groundwater generally existed under mildly reducing conditions (Eh < 200 mV), weak alkaline conditions (pH < 7.2), elevated concentrations of dissolved Fe(II) and S(-II), and high proportions of As (III); 2) As species in the groundwater changed dramatically at room temperature in 36 hours post extraction (HPE). Fe-sulfide and Fe oxides minerals, which adsorbed As (V), were the main reasons influencing the As species concentration; 3) Acidification and strong complexing agents cannot preserve As species effectively. The average proportion of As (III) in the wells, where groundwater samples from the depth of 25 m exceed 10 μg L-1 As, can be reduced by 61% and 63% after HCl and EDTA were added, respectively. Accurate assessment of concentrations and distribution variation of As species in groundwater can guide the removal of As and the safe use of water resources, especially in drought areas relying on drinking well water.
Collapse
Affiliation(s)
- Danyang Tao
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Changzhi Shi
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, PR China
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, PR China.
| | - Yamin Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yue'e Peng
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, PR China
| | - Yuhe He
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuanyuan He
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Kai Zhang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Biver M. A Comprehensive Potentiometric Study of the Tartrate Complexes of Trivalent Arsenic, Antimony, and Bismuth in Aqueous Solution. Inorg Chem 2021; 60:18360-18369. [PMID: 34784467 DOI: 10.1021/acs.inorgchem.1c02962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tartrate complexes of trivalent arsenic, antimony, and bismuth were studied potentiometrically. The existing, fragmentary data on the antimony/l-(+)-tartrate system were confirmed. Nine complexes of arsenic and bismuth with optically active, racemic, and meso-tartrate, as well as complexes of antimony with meso-tartrate, were newly identified, and their formation constants computed. Difficulties arising from the poor stability of the arsenic complexes and precipitation in the Sb(III)/meso-tartrate system were overcome by titrating at very high concentrations [As(III) systems] and using an auxiliary ligand [Sb(III) in the presence of catechol]. All data were obtained at 25.0 °C and at constant ionic strength [0.1 mol L-1 for Sb(III) and Bi(III) complexes and 1 mol L-1 for As(III) complexes]. Speciation diagrams of all systems at millimolar concentrations were computed on the basis of the newly obtained constants and the results discussed.
Collapse
Affiliation(s)
- Marc Biver
- Bibliothèque Nationale du Luxembourg, 37D, Avenue John F. Kennedy, L-1855 Luxembourg, Grand Duchy of Luxembourg
| |
Collapse
|
7
|
Previti E, Foti C, Giuffrè O, Saija F, Sponer J, Cassone G. Ab initio molecular dynamics simulations and experimental speciation study of levofloxacin under different pH conditions. Phys Chem Chem Phys 2021; 23:24403-24412. [PMID: 34693952 DOI: 10.1039/d1cp03942c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Levofloxacin is an extensively employed broad-spectrum antibiotic belonging to the fluoroquinolone class. Despite the extremely wide usage of levofloxacin for a plethora of diseases, the molecular characterization of this antibiotic appears quite poor in the literature. Moreover, the acid-base properties of levofloxacin - crucial for the design of efficient removal techniques from wastewaters - have never extensively been investigated so far. Here we report on a study on the behavior of levofloxacin under standard and diverse pH conditions in liquid water by synergistically employing static quantum-mechanical calculations along with experimental speciation studies. Furthermore, with the aim of characterizing the dynamics of the water solvation shells as well as the protonation and deprotonation mechanisms, here we present the unprecedented quantum-based simulation of levofloxacin in aqueous environments by means of state-of-the-art density-functional-theory-based molecular dynamics. This way, we prove the cooperative role played by the aqueous hydration shells in assisting the proton transfer events and, more importantly, the key place held by the nitrogen atom binding the methyl group of levofloxacin in accepting excess protons eventually present in water. Finally, we also quantify the energetic contribution associated with the presence of a H-bond internal to levofloxacin which, on the one hand, stabilizes the ground-state molecular structure of this antibiotic and, on the other, hinders the first deprotonation step of this fluoroquinolone. Among other things, the synergistic employment of quantum-based calculations and speciation experiments reported here paves the way toward the development of targeted removal approaches of drugs from wastewaters.
Collapse
Affiliation(s)
- Emanuele Previti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Salita Sperone 31, 98166 Messina, Italy.
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Salita Sperone 31, 98166 Messina, Italy.
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Salita Sperone 31, 98166 Messina, Italy.
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Viale Stagno d'Alcontres 37, 98158 Messina, Italy.
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences (IBP-CAS), Kràlovopolskà 135, 61265 Brno, Czechia
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Viale Stagno d'Alcontres 37, 98158 Messina, Italy.
| |
Collapse
|
8
|
Liu Y, Yang S, Jiang H, Yang B, Fang X, Shen C, Yang J, Sand W, Li F. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124384. [PMID: 33229265 DOI: 10.1016/j.jhazmat.2020.124384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Advanced nanotechnologies for efficient arsenic decontamination remain largely underdeveloped. The most abundant inorganic arsenic species are neutrally-charged arsenate, As(III), and negatively-charged arsenite, As(V). Compared with As(V), As(III) is 60 times more toxic and more difficult to remove due to high mobility. Herein, an electrochemical filtration system was rationally designed for one-step As(III) decontamination. The key to this technology is a functional electroactive carbon nanotube (CNT) filter functionalized with sea urchin-like FeOOH. With the assistance of electric field, CNT-FeOOH anodic filter can in situ transform As(III) to less toxic As(V) while passing through. Then, as-produced As(V) could be effectively sequestrated by FeOOH. The sufficient exposed sorption sites, flow-through design, and filter's electrochemical reactivity synergistically guaranteed a rapid arsenic removal kinetic. The underlying working mechanism was unveiled based on systematic experimental investigations and theoretical calculations. The system efficacy can be adapted across a wide pH range and environmental matrixes. Exhausted CNT-FeOOH filters could be effectively regenerated by chemical washing with diluted NaOH solution. Outcomes of the present study are dedicated to provide a straightforward and effective strategy by integrating electrochemistry, nanotechnology, and membrane separation for the removal of arsenic and other similar heavy metals from water bodies.
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Shengnan Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hualin Jiang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaofeng Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai 201620, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
9
|
Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arsenic is present naturally in many geological formations around the world and has been found to be a major source of contamination of groundwater in some countries. This form of contamination represents a serious threat to health, economic and social well-being, particularly in under-developed countries and remote communities. The chemistry of arsenic and the factors that influence the form(s) in which it may be present and its fate when introduced into the environment is discussed briefly in this review. A global overview of arsenic contamination of groundwater around the world is then discussed. As a case study, the identified and established causes of groundwater contamination by arsenic in Bangladesh is highlighted and a perspective is provided on the consequential health, agricultural, social and economic impacts. In addition, the relevant removal strategies that have been developed and can generally be used to remediate arsenic contamination are discussed. Also, the possible influence of groundwater inorganic compositions, particularly iron and phosphate, on the effectiveness of arsenic removal is discussed. Furthermore, some specific examples of the filter systems developed successfully for domestic arsenic removal from groundwater to provide required potable water for human consumption are discussed. Lastly, important considerations for further improving the performance and effectiveness of these filter systems for domestic use are outlined.
Collapse
|
10
|
Foti C, Mineo PG, Nicosia A, Scala A, Neri G, Piperno A. Recent Advances of Graphene-Based Strategies for Arsenic Remediation. Front Chem 2020; 8:608236. [PMID: 33381493 PMCID: PMC7767874 DOI: 10.3389/fchem.2020.608236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/07/2022] Open
Abstract
The decontamination of water containing toxic metals is a challenging problem, and in the last years many efforts have been undertaken to discover efficient, cost-effective, robust, and handy technology for the decontamination of downstream water without endangering human health. According to the World Health Organization (WHO), 180 million people in the world have been exposed to toxic levels of arsenic from potable water. To date, a variety of techniques has been developed to maintain the arsenic concentration in potable water below the limit recommended by WHO (10 μg/L). Recently, a series of technological advancements in water remediation has been obtained from the rapid development of nanotechnology-based strategies that provide a remarkable control over nanoparticle design, allowing the tailoring of their properties toward specific applications. Among the plethora of nanomaterials and nanostructures proposed in the remediation field, graphene-based materials (G), due to their unique physico-chemical properties, surface area, size, shape, ionic mobility, and mechanical flexibility, are proposed for the development of reliable tools for water decontamination treatments. Moreover, an emerging class of 3D carbon materials characterized by the intrinsic properties of G together with new interesting physicochemical properties, such as high porosity, low density, unique electrochemical performance, has been recently proposed for water decontamination. The main design criteria used to develop remediation nanotechnology-based strategies have been reviewed, and special attention has been reserved for the advances of magnetic G and for nanostructures employed in the fabrication of membrane filtration.
Collapse
Affiliation(s)
- Claudia Foti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Angelo Nicosia
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Cassone G, Chillè D, Mollica Nardo V, Giuffrè O, Ponterio RC, Sponer J, Trusso S, Saija F, Foti C. Arsenic-nucleotides interactions: an experimental and computational investigation. Dalton Trans 2020; 49:6302-6311. [PMID: 32334418 DOI: 10.1039/d0dt00784f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Albeit arsenic As(iii) is a well-known carcinogenic contaminant, the modalities by which it interacts with living organisms are still elusive. Details pertaining to the binding properties of As(iii) by common nucleotides such as AMP, ADP and ATP are indeed mostly unknown. Here we present an investigation, conducted via experimental and quantum-based computational approaches, on the stability of the complexes formed by arsenic with those nucleotides. By means of potentiometric and calorimetric measurements, the relative stability of AMP, ADP and ATP has been evaluated as a function of the pH. It turns out that ATP forms more stable structures with As(iii) than ADP which, in turn, better chelates arsenic than AMP. Such a stability sequestration capability of arsenic (ATP > ADP > AMP) has been interpreted on a twofold basis via state-of-the-art ab initio molecular dynamics (AIMD) and metadynamics (MetD) simulations performed on aqueous solutions of As(iii) chelated by AMP and ATP. In fact, we demonstrate that ATP offers a larger number of effective binding sites than AMP, thus indicating a higher statistical probability for chelating arsenic. Moreover, an evaluation of the free energy associated with the interactions that As(iii) establishes with the nucleotide atoms responsible for the binding quantitatively proves the greater effectiveness of ATP as a chelating agent.
Collapse
Affiliation(s)
| | - Donatella Chillè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Salita Sperone 31, 98166 Messina, Italy.
| | | | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Salita Sperone 31, 98166 Messina, Italy.
| | | | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | | | - Franz Saija
- CNR-IPCF, Viale Stagno d'Alcontres 37, 98158 Messina, Italy.
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Salita Sperone 31, 98166 Messina, Italy.
| |
Collapse
|
12
|
Giuffrè O, Aiello D, Chillè D, Napoli A, Foti C. Binding ability of arsenate towards Cu 2+ and Zn 2+: thermodynamic behavior and simulation under natural water conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1731-1742. [PMID: 32672306 DOI: 10.1039/d0em00136h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A study on the sequestering ability between arsenate, AsO43-, and Cu2+ and Zn2+ in aqueous solution is reported. The results of the elaboration of potentiometric data include only species with 1 : 1 metal to ligand ratio for Cu2+-arsenate system, namely CuLH2, CuLH, CuL, and CuLOH (L = AsO43-). For the Zn2+-arsenate system, a speciation model with only two species with both 1 : 1 and 1 : 2 metal to ligand ratios was obtained, namely ML and ML2. Spectrophotometric titrations were also employed in the study of the Cu2+-AsO43- system, and the results of the analysis of experimental data fully confirmed potentiometric ones. The potentiometric titrations were performed under different conditions of temperature (288.15 ≤ T/K ≤ 310.15, at I = 0.15 mol L-1) and ionic strength (0.15 ≤ I/mol L-1 ≤ 1 in NaCl). The dependence of formation constants of the complex species on ionic strength and temperature was also evaluated, as well as the enthalpy and entropy change values were obtained. Laser desorption mass spectrometry (LD MS) and tandem mass spectrometry (MS/MS) were exploited to confirm Cu2+-AsO43- and Zn2+-AsO43- complex formation and to determine both their composition and structural characteristics. Simulation of speciation profiles under natural water conditions was performed. The sequestering ability of arsenate towards Cu2+ and Zn2+ was quantified under different conditions of pH, temperature and ionic strength, typical of several natural waters. Examples of arsenate distribution under seawater and freshwater conditions were reported.
Collapse
Affiliation(s)
- Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Donatella Aiello
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Donatella Chillè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
13
|
Chillè D, Aiello D, Grasso GI, Giuffrè O, Napoli A, Sgarlata C, Foti C. Complexation of As(III) by phosphonate ligands in aqueous fluids: Thermodynamic behavior, chemical binding forms and sequestering abilities. J Environ Sci (China) 2020; 94:100-110. [PMID: 32563473 DOI: 10.1016/j.jes.2020.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the contamination of water by arsenic reached alarming levels in many countries of the world, attracting the interest of many researchers engaged in testing methodologies able to remove this harmful pollutant. An important aspect that must be taken into consideration is the possibility to find arsenic in different chemical forms which could require different approaches for its removal. At this aim, a speciation analysis appears to be crucial for better understanding the behavior of arsenic species in aqueous solutions, especially in presence of compounds with marked chelating properties. Phosphonates can be identified as good sequestering agents and, at this purpose, this manuscript intends to investigate the interaction of As(III) with three phosphonic acids derived from nitrilotriacetic acid (NTA) by replacements of one (N-(Phosphonomethyl) iminodiacetic acid, NTAP), two (N,N-Bis-(phosphonomethyl) glycine, NTA2P) and three (Nitrilotri(methylphosphonic acid), NTA3P) carboxylic groups with the same number of phosphonate groups. An in-depth potentiometric and calorimetric investigation allowed to determine speciation models featured by simple ML, MLHi and ML(OH) species. A complete thermodynamic characterization of the systems is reported together with the definition of coordination mode by mass spectrometry measurements. On the light of the speciation models, the possibility of using these ligands in arsenic removal techniques was assessed by determining the pL0.5 (the concentration of ligand able to remove the 50% of metal ion present in trace). All ligands show a good sequestering ability, in particular under the conditions of fresh water, following the trend NTA3P > NTA2P > NTAP.
Collapse
Affiliation(s)
- Donatella Chillè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Donatella Aiello
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giuseppa Ida Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Carmelo Sgarlata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
14
|
Yang CH, Chang JS, Lee DJ. Covalent organic framework EB-COF:Br as adsorbent for phosphorus (V) or arsenic (V) removal from nearly neutral waters. CHEMOSPHERE 2020; 253:126736. [PMID: 32302910 DOI: 10.1016/j.chemosphere.2020.126736] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 05/27/2023]
Abstract
The covalent organic framework (COF) is made light elements linked by covalent networks. This study synthesize and characterized, and for the first time applied the produced EB-COF:Br as adsorbent for phosphate and arsenate removal from nearly neutral waters. The synthesized COF was first proven structurally stable in solutions of 75% H3PO4, 6 M HCl, or 6 M NaOH. Then the phosphate adsorption onto the EB-COF:Br was shown to be an endothermic process with maximum adsorption capacity at 25, 35 and 45 °C as 25.3, 34.7 and 35.3 mg/g COF, respectively; and the corresponding arsenate adsorption process being an exothermic process with maximnum adsorption capacity as 53.1, 27.5 and 5.1 mg/g, respectively. The synthesized COF could also effectively adsorb phosphate and arsenate ions from river water (pH 7.45) but at reduced adsorption capacities. The electrostatic interactions between the negative charge on phosphate or arsenate ions and the positively charged (N+-) of COF, and the hydrogen bondings between H atom on phosphate or arsenate ions and the (-CO) group of COF were the dominating mechanisms for the present adsorption process. The strong electrostatic interactions for arsenate contributed to its higer adsorption capacity than noted for phosphate at 25 °C. However, the disturbed hydrogen bonding induced by mismatched sizes of arsenate ion and the adsorption sites surrounded by the (N+-) and the (-CO) groups reduced the stability of arsenate to against temperature and external anion challenges. The use of the EB-COF; Br as industrial adsorbent was also discussed.
Collapse
Affiliation(s)
- Cheng-Hao Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, College of Engineering, Tunghai University, Taichung, 40704, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan; Department of Chemical Engineering, College of Engineering, Tunghai University, Taichung, 40704, Taiwan; National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
15
|
Wang XM, Wu SH, Ren HT, Zhu PY, Wang C, Liu Y, Sun SW, Zhang XC, Lin YY, Meng ZH, Jia SY, Han X. Formation of hydroperoxo (-OOH) species on the surface of self-doped Bi 2.15WO 6: reactivity towards As(iii) oxidation. Phys Chem Chem Phys 2020; 22:12456-12464. [PMID: 32458845 DOI: 10.1039/d0cp00569j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bi2+xWO6 is a cost-effective and environmentally friendly photocatalyst that shows high reactivity in the oxidation of various contaminants under visible light. However, under alkaline conditions, the reactive oxidative species in the Bi2+xWO6 system are still not clear yet. In this study, it is observed that the oxidation rates of As(iii) increase with increasing pH values in the Bi2.15WO6 system. Photoluminescence and the Mott-Schottky analyses confirm that OH- promotes the separation and transfer of photogenerated electron-hole pairs over Bi2.15WO6, thus facilitating the oxidation of As(iii). Electron spin resonance spectra analysis and quenching experiments rule out contributions of •OH, O2˙-, 1O2 and superoxo species to As(iii) oxidation and indicate that surface -OOH and/or H2O2 are indeed the predominant species under alkaline conditions. The improved production of H2O2 by H-donors such as glucose and phenol, as well as the UV-vis diffuse reflectance and Raman analyses, further confirms the formation of surface -OOH on Bi2.15WO6 under alkaline conditions. In the dark, the significant higher oxidation rate of As(iii) by H2O2-Bi2.15WO6 than that by H2O2 alone reveals that surface -OOH, instead of H2O2, plays an important role in As(iii) oxidation. This study enriches our understanding of the diversity of reactive oxygen species (ROS) in the Bi2.15WO6 system and gives new insight into the mechanism involved in the oxidation of As(iii) under alkaline conditions.
Collapse
Affiliation(s)
- Xiang-Ming Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Song-Hai Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin, P. R. China.
| | - Peng-Yue Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, P. R. China
| | - Cong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Shi-Wei Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Xiao-Cong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Yi-Ying Lin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Zi-He Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Shao-Yi Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Xu Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China and Key Lab of Indoor Air Environment Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, P. R. China.
| |
Collapse
|
16
|
Ultra-selective, trace level detection of As3+ ions in blood samples using PANI coated BiVO4 modified SPCE via differential pulse anode stripping voltammetry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110806. [DOI: 10.1016/j.msec.2020.110806] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023]
|
17
|
Interacting Ru(bpy)
3
2
+
Dye Molecules and TiO2 Semiconductor in Dye-Sensitized Solar Cells. MATHEMATICS 2020. [DOI: 10.3390/math8050841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solar energy is an alternative source of energy that can be used to replace fossil fuels. Various types of solar cells have been developed to harvest this seemingly endless supply of energy, leading to the construction of solar cell devices, such as dye-sensitized solar cells. An important factor that affects energy conversion efficiency of dye-sensitized solar cells is the distribution of dye molecules within the porous semiconductor (TiO 2 ). In this paper, we formulate a continuum model for the interaction between the dye molecule Tris(2,2 ′ -bipyridyl)ruthenium(II) (Ru(bpy) 3 2 + ) and titanium dioxide (TiO 2 ) semiconductor. We obtain the equilibrium position at the minimum energy position between the dye molecules and between the dye and TiO 2 nanoporous structure. Our main outcome is an analytical expression for the energy of the two molecules as a function of their sizes. We also show that the interaction energy obtained using the continuum model is in close agreement with molecular dynamics simulations.
Collapse
|
18
|
Duan X, Li X. Exploring the influence of water molecules on the stability of the cinnabar oxides. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Chillè D, Cassone G, Giacobello F, Giuffrè O, Nardo VM, Ponterio RC, Saija F, Sponer J, Trusso S, Foti C. Removal of As(III) from Biological Fluids: Mono- versus Dithiolic Ligands. Chem Res Toxicol 2020; 33:967-974. [PMID: 32180400 PMCID: PMC7997625 DOI: 10.1021/acs.chemrestox.9b00506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Arsenic is one of
the inorganic pollutants typically found in natural
waters, and its toxic effects on the human body are currently of great
concern. For this reason, the search for detoxifying agents that can
be used in a so-called “chelation therapy” is of primary
importance. However, to the aim of finding the thermodynamic behavior
of efficient chelating agents, extensive speciation studies, capable
of reproducing physiological conditions in terms of pH, temperature,
and ionic strength, are in order. Here, we report on the acid–base
properties of meso-2,3-dimercaptosuccinic acid
(DMSA) at different temperatures (i.e., T = 288.15,
298.15, 310.15, and 318.15 K). In particular, its capability to interact
with As(III) has been investigated by experimentally evaluating some
crucial thermodynamic parameters (ΔH and TΔS), stability constants, and its
speciation model. Additionally, in order to gather information on
the microscopic coordination modalities of As(III) with the functional
groups of DMSA and, at the same time, to better interpret the experimental
results, a series of state-of-the-art ab initio molecular
dynamics simulations have been performed. For the sake of completeness,
the sequestering capabilities of DMSA—a simple dithiol ligand—toward
As(III) are directly compared with those recently emerged from similar
analyses reported on monothiol ligands.
Collapse
Affiliation(s)
- Donatella Chillè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Cassone
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Fausta Giacobello
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Viviana Mollica Nardo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosina C Ponterio
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Kràlovopolskà 135, 61265 Brno, Czech Republic
| | - Sebastiano Trusso
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
20
|
Aydin F, Zhan C, Ritt C, Epsztein R, Elimelech M, Schwegler E, Pham TA. Similarities and differences between potassium and ammonium ions in liquid water: a first-principles study. Phys Chem Chem Phys 2020; 22:2540-2548. [DOI: 10.1039/c9cp06163k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding ion solvation in liquid water is critical in optimizing materials for a wide variety of emerging technologies, including water desalination and purification.
Collapse
Affiliation(s)
- Fikret Aydin
- Lawrence Livermore National Laboratory
- Livermore
- USA
| | - Cheng Zhan
- Lawrence Livermore National Laboratory
- Livermore
- USA
| | - Cody Ritt
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
| | - Razi Epsztein
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
- Faculty of Civil and Environmental Engineering
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
| | | | | |
Collapse
|
21
|
Cassone G, Chillè D, Giacobello F, Giuffrè O, Mollica Nardo V, Ponterio RC, Saija F, Sponer J, Trusso S, Foti C. Interaction between As(III) and Simple Thioacids in Water: An Experimental and ab Initio Molecular Dynamics Investigation. J Phys Chem B 2019; 123:6090-6098. [DOI: 10.1021/acs.jpcb.9b04901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Giuseppe Cassone
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Donatella Chillè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Fausta Giacobello
- CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | | | | | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Sebastiano Trusso
- CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
22
|
Cassone G, Kruse H, Sponer J. Interactions between cyclic nucleotides and common cations: an ab initio molecular dynamics study. Phys Chem Chem Phys 2019; 21:8121-8132. [PMID: 30932112 DOI: 10.1039/c8cp07492e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present the first, to the best of our knowledge, ab initio molecular dynamics (AIMD) investigation on three aqueous solutions where an abasic cyclic nucleotide model is solvated in the presence of distinct cations (i.e., Na+, K+ and Mg2+). We elucidate the typical modalities of interaction between those ionic species and the nucleotide moiety by first-principles numerical simulations, starting from an inner-shell binding configuration on a time scale of 100 ps (total simulation time of ∼600 ps). Whereas the strong "structure-maker" Mg2+ is permanently bound to one of the two oxygen atoms of the phosphate group of the nucleotide model, Na+ and K+ show binding times τb of 65 ps and 10-15 ps, respectively, thus reflecting their chemical nature in aqueous solutions. Furthermore, we qualitatively relate these findings to approximate free-energy barriers of the cations' unbinding obtained by means of exploratory well-tempered metadynamics. With the aim of shedding light on the features of commonly employed force-fields (FFs), classical MD simulations (almost 200 trajectories with a total simulation time of ∼18 μs) using the biomolecular AMBER FF are also reported. By choosing several combinations of the parametrization for the water environment (i.e., TIP3P, SPC/E and OPC) and cations (i.e., Joung-Cheatham, Li-Merz 12-6 and Li-Merz 12-6-4), we found significant differences in the radial distribution functions and residence times compared to the ab initio results. The Na+ and K+ ions wrongly show quasi-identical radial distribution functions and the Li & Merz 12-6-4 Lennard-Jones parameters for Mg2+ were found to be essential in quickly reaching the binding state consistent with AIMD.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | |
Collapse
|
23
|
Rezaei M, Azimian AR, Pishevar AR. Surface charge-dependent hydrodynamic properties of an electroosmotic slip flow. Phys Chem Chem Phys 2018; 20:30365-30375. [PMID: 30489580 DOI: 10.1039/c8cp06408c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The electroosmosis effects at the interface of an aqueous NaCl solution and a charged silicon surface are studied using a molecular dynamics (MD) method. Considering a plug-like electroosmotic flow, we identified a thin interfacial layer in the immediate vicinity of the charged surface, where the flow velocity experiences almost linear spatial variations. The thickness of this interfacial layer is found to be linearly dependent on the surface charge density, with a negative slope which slightly depends on the surface hydrophobicity while being independent of the salt concentration, electric field strength, and orientation of the surface lattice. It is also found that upon increasing the surface charge density, the effective slip length first increases up to a maximum amount and then follows an almost linear reduction. We found that increasing the salt concentration drastically reduces the surface charge at which the effective slip length reaches its maximum amount. For highly concentrated solutions, therefore, the effective slip length could be assumed to change linearly in the whole range of the surface charge density, with a slope which is proportional to the square root of the electric field strength divided by the depth of the potential well assigned to the surface atoms εwall. Also, in a wide range of the surface charge density, the slip velocity is found to be a constant fraction of the electroosmotic velocity, which could be measured experimentally. Finally, by comparing the electroosmotic velocities calculated from the Stokes equation (considering both the slip and no-slip boundary conditions) with our MD results, we found that the no-slip boundary condition, which is normally used in analytical calculations, leads to a very inaccurate result for the studied system.
Collapse
Affiliation(s)
- Majid Rezaei
- Mechanical Engineering Department, Isfahan University of Technology, Isfahan, Iran.
| | | | | |
Collapse
|