Berdakin M, Rodríguez-Mena EA, Foa Torres LEF. Spin-Polarized Tunable Photocurrents.
NANO LETTERS 2021;
21:3177-3183. [PMID:
33819037 DOI:
10.1021/acs.nanolett.1c00420]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Harnessing the unique features of topological materials for the development of a new generation of topological based devices is a challenge of paramount importance. Using Floquet scattering theory combined with atomistic models we study the interplay among laser illumination, spin, and topology in a two-dimensional material with spin-orbit coupling. Starting from a topological phase, we show how laser illumination can selectively disrupt the topological edge states depending on their spin. This is manifested by the generation of pure spin photocurrents and spin-polarized charge photocurrents under linearly and circularly polarized laser illumination, respectively. Our results open a path for the generation and control of spin-polarized photocurrents.
Collapse