1
|
Escañuela-Copado A, López-Molina J, Kanduč M, Jódar-Reyes AB, Tirado-Miranda M, Bastos-González D, Peula-García JM, Adroher-Benítez I, Moncho-Jordá A. Diffusion and Interaction Effects On Molecular Release Kinetics From Collapsed Microgels. ACS APPLIED POLYMER MATERIALS 2024; 6:8905-8917. [PMID: 39144277 PMCID: PMC11320387 DOI: 10.1021/acsapm.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
The efficient transport of small molecules through dense hydrogel networks is crucial for various applications, including drug delivery, biosensing, catalysis, nanofiltration, water purification, and desalination. In dense polymer matrices, such as collapsed microgels, molecular transport follows the solution-diffusion principle: Molecules dissolve in the polymeric matrix and subsequently diffuse due to a concentration gradient. Employing dynamical density functional theory (DDFT), we investigate the nonequilibrium release kinetics of nonionic subnanometer-sized molecules from a microgel particle, using parameters derived from prior molecular simulations of a thermoresponsive hydrogel. The kinetics is primarily governed by the microgel radius and two intensive parameters: the diffusion coefficient and solvation free energy of the molecule. Our results reveal two limiting regimes: a diffusion-limited regime for large, slowly diffusing, and poorly soluble molecules within the hydrogel; and a reaction-limited regime for small, rapidly diffusing, and highly soluble molecules. These principles allow us to derive an analytical equation for release time, demonstrating excellent quantitative agreement with the DDFT results-a valuable and straightforward tool for predicting release kinetics from microgels.
Collapse
Affiliation(s)
- Adri Escañuela-Copado
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - José López-Molina
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - Matej Kanduč
- Jožef
Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Ana Belén Jódar-Reyes
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
- Excellence
Research Unit Modeling Nature (MNat), University
of Granada, 18071 Granada, Spain
| | - María Tirado-Miranda
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - Delfi Bastos-González
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - José Manuel Peula-García
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
- Departamento
of Física Aplicada II, Universidad
of Málaga, 29071 Málaga, Spain
| | - Irene Adroher-Benítez
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
| | - Arturo Moncho-Jordá
- Grupo
de Física de Fluidos y Biocoloides, Departamento de Física
Aplicada, Universidad de Granada, 18071 Granada, Spain
- Instituto
Carlos I de Física Teórica y Computacional, Facultad
de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Altujjar A, Mokhtar MZ, Chen Q, Neilson J, Spencer BF, Thomas A, Saunders JM, Wang R, Alkhudhari O, Mironov A, Saunders BR. Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58640-58651. [PMID: 34859674 DOI: 10.1021/acsami.1c18239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Additive engineering has been applied widely to improve the efficiency and/or stability of perovskite solar cells (PSCs). Most additives used to date are difficult to locate within PSCs as they are small molecules or linear polymers. In this work, we introduce, for the first time, carboxylic acid-functionalized nanogels (NGs) as additives for PSCs. NGs are swellable sub-100 nm gel particles. The NGs consist of poly(2-(2-methoxyethoxy) ethyl methacrylate)-co-methacrylic acid-co-ethylenegylcol dimethacrylate (PMEO2MA-MAA-EGD) particles prepared by a scalable synthesis, which have a diameter of 40 nm. They are visualized in the perovskite films using SEM and are located at the grain boundaries. X-ray photoelectron and FTIR spectroscopy reveal that the NGs coordinate with Pb2+ via the -COOH groups. Including the NGs within the PSCs increased the grain size, decreased nonradiative recombination, and increased the power conversion efficiency (PCE) to 20.20%. The NGs also greatly increase perovskite stability to ambient storage, elevated temperature, and humidity. The best system maintained more than 80% of its original PCE after 180 days of storage under ambient conditions. Tensile cross-cut tape adhesion tests are used to assess perovskite film mechanical integrity. The NGs increased both the adhesion of the perovskite to the substrate and the mechanical stability. This study demonstrates that NGs are an attractive alternative to molecularly dispersed additives for providing performance benefits to PSCs. Our study indicates that the NGs act as a passivator, stabilizer, cross-linker, and adhesion promoter.
Collapse
Affiliation(s)
- Amal Altujjar
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
| | - Muhamad Z Mokhtar
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
| | - Qian Chen
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
| | - Joseph Neilson
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
| | - Ben F Spencer
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
- The Photon Science Institute and The Henry Royce Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew Thomas
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
- The Photon Science Institute and The Henry Royce Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K
| | - Jennifer M Saunders
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
| | - Ran Wang
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
| | - Osama Alkhudhari
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Brian R Saunders
- Department of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, U.K
| |
Collapse
|
3
|
Moncho-Jordá A, Jódar-Reyes AB, Kanduč M, Germán-Bellod A, López-Romero JM, Contreras-Cáceres R, Sarabia F, García-Castro M, Pérez-Ramírez HA, Odriozola G. Scaling Laws in the Diffusive Release of Neutral Cargo from Hollow Hydrogel Nanoparticles: Paclitaxel-Loaded Poly(4-vinylpyridine). ACS NANO 2020; 14:15227-15240. [PMID: 33174725 DOI: 10.1021/acsnano.0c05480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the nonequilibrium diffusive release of electroneutral molecular cargo encapsulated inside hollow hydrogel nanoparticles. We propose a theoretical model that includes osmotic, steric, and short-range polymer-cargo attractions to determine the effective cargo-hydrogel interaction, ueff*, and the effective diffusion coefficient of the cargo inside the polymer network, Deff*. Using dynamical density functional theory (DDFT), we investigate the scaling of the characteristic release time, τ1/2, with the key parameters involved in the process, namely, ueff*, Deff*, and the swelling ratio. This effort represents a full study of the problem, covering a broad range of cargo sizes and providing predictions for repulsive and attractive polymer shells. Our calculations show that the release time through repulsive polymer networks scales with q2eβueff*/Deff* for βueff* ≫ 1. In this case, the cargo molecules are excluded from the shell of the hydrogel. For attractive shells, the polymer retains the cargo molecules on its internal surface and its interior, and the release time grows exponentially with the attraction strength. The DDFT calculations are compared to an analytical model for the mean first passage time, which provides an excellent quantitative description of the kinetics for both repulsive and attractive shells without fitting parameters. Finally, we apply the method to reproduce experimental results on the release of paclitaxel from hollow poly(4-vinylpyridine) nanoparticles and find that the slow release of the drug can be explained in terms of the strong binding attraction between the drug and the polymer.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Ana B Jódar-Reyes
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Matej Kanduč
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Alicia Germán-Bellod
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Juan M López-Romero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Rafael Contreras-Cáceres
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain
| | - Francisco Sarabia
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Miguel García-Castro
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Héctor A Pérez-Ramírez
- Física de Procesos Irreversibles, Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, 02200 Ciudad de México, Mexico
| | - Gerardo Odriozola
- Física de Procesos Irreversibles, Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, 02200 Ciudad de México, Mexico
| |
Collapse
|
4
|
Lian Q, Mokhtar MZ, Lu D, Zhu M, Jacobs J, Foster AB, Thomas AG, Spencer BF, Wu S, Liu C, Hodson NW, Smith B, Alkaltham A, Alkhudhari OM, Watson T, Saunders BR. Using Soft Polymer Template Engineering of Mesoporous TiO 2 Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18578-18589. [PMID: 32237709 DOI: 10.1021/acsami.0c02248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mesoporous (meso)-TiO2 layer is a key component of high-efficiency perovskite solar cells (PSCs). Herein, pore size controllable meso-TiO2 layers are prepared using spin coating of commercial TiO2 nanoparticle (NP) paste with added soft polymer templates (SPT) followed by removal of the SPT at 500 °C. The SPTs consist of swollen crosslinked polymer colloids (microgels, MGs) or a commercial linear polymer (denoted as LIN). The MGs and LIN were comprised of the same polymer, which was poly(N-isopropylacrylamide) (PNIPAm). Large (L-MG) and small (S-MG) MG SPTs were employed to study the effect of the template size. The SPT approach enabled pore size engineering in one deposition step. The SPT/TiO2 nanoparticle films had pore sizes > 100 nm, whereas the average pore size was 37 nm for the control meso-TiO2 scaffold. The largest pore sizes were obtained using L-MG. SPT engineering increased the perovskite grain size in the same order as the SPT sizes: LIN < S-MG < L-MG and these grain sizes were larger than those obtained using the control. The power conversion efficiencies (PCEs) of the SPT/TiO2 devices were ∼20% higher than that for the control meso-TiO2 device and the PCE of the champion S-MG device was 18.8%. The PCE improvement is due to the increased grain size and more effective light harvesting of the SPT devices. The increased grain size was also responsible for the improved stability of the SPT/TiO2 devices. The SPT method used here is simple, scalable, and versatile and should also apply to other PSCs.
Collapse
Affiliation(s)
- Qing Lian
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| | - Muhamad Z Mokhtar
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| | - Dongdong Lu
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| | - Mingning Zhu
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| | - Janet Jacobs
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Andrew B Foster
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Andrew G Thomas
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- The Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ben F Spencer
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
- The Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shanglin Wu
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| | - Chen Liu
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| | - Nigel W Hodson
- BioAFM Facility, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Benjamin Smith
- SPECIFIC, College of Engineering, Swansea University Bay Campus, Swansea SA1 8EN, United Kingdom
| | - Abdulaziz Alkaltham
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| | - Osama M Alkhudhari
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| | - Trystan Watson
- SPECIFIC, College of Engineering, Swansea University Bay Campus, Swansea SA1 8EN, United Kingdom
| | - Brian R Saunders
- Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom
| |
Collapse
|