1
|
Jin YY, Jin Y, Shi ZX, Tian WD, Zhang TH, Chen K. Deformation-induced phase separation of active vesicles. Phys Chem Chem Phys 2024; 26:24699-24708. [PMID: 39282801 DOI: 10.1039/d4cp02535k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Many active materials, such as bacteria and cells, are deformable. Deformability significantly affects their collective behaviors and movements in complex environments. Here, we introduce a two-dimensional deformable active vesicle (DAV) model to emulate cell-like deformable active matter, wherein the deformability can be continuously adjusted. We find that changes in deformability can induce phase separation of DAVs. The system can transition between a homogeneous gas state, a coexistence of gas and liquid, and a coexistence of gas and solid. The occurrence of deformation-induced phase separation is accompanied by nonmonotonic changes in effective concentration, particle size and shape. Moreover, the degree of deformability also impacts the motility and stress within the dense phase following phase separation. Our results offer new insights into the role of deformability in the collective behavior of active matter.
Collapse
Affiliation(s)
- Yi-Yang Jin
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Yan Jin
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Zi-Xuan Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Tian-Hui Zhang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
2
|
Schiltz-Rouse E, Row H, Mallory SA. Kinetic temperature and pressure of an active Tonks gas. Phys Rev E 2023; 108:064601. [PMID: 38243499 DOI: 10.1103/physreve.108.064601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/06/2023] [Indexed: 01/21/2024]
Abstract
Using computer simulation and analytical theory, we study an active analog of the well-known Tonks gas, where active Brownian particles are confined to a periodic one-dimensional (1D) channel. By introducing the notion of a kinetic temperature, we derive an accurate analytical expression for the pressure and clarify the paradoxical behavior where active Brownian particles confined to 1D exhibit anomalous clustering but no motility-induced phase transition. More generally, this work provides a deeper understanding of pressure in active systems as we uncover a unique link between the kinetic temperature and swim pressure valid for active Brownian particles in higher dimensions.
Collapse
Affiliation(s)
- Elijah Schiltz-Rouse
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hyeongjoo Row
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California 94720, USA
| | - Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Feng GQ, Tian WD. Desorption of a Flexible Polymer with Activity from a Homogeneous Attractive Surface. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Guo-qiang Feng
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
4
|
Anderson CJ, Briand G, Dauchot O, Fernández-Nieves A. Polymer-chain configurations in active and passive baths. Phys Rev E 2022; 106:064606. [PMID: 36671158 DOI: 10.1103/physreve.106.064606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
The configurations taken by polymers embedded in out-of-equilibrium baths may have broad implications in a variety of biological systems. As such, they have attracted considerable interest, particularly in simulation studies. Here we analyze the distribution of configurations taken by a passive flexible chain in a bath of hard, self-propelled, vibrated disks and systematically compare it to that of the same flexible chain in a bath of hard, thermal-like, vibrated disks. We demonstrate experimentally that the mean length and mean radius of gyration of both chains agree with Flory's law. However, the Kuhn length associated with the number of correlated monomers is smaller in the case of the active bath, corresponding to a higher effective temperature. Importantly, the active bath does not just simply map on a hot equilibrium bath. Close examination of the chains' configurations indicates a marked bias, with the chain in the active bath more likely assuming configurations with a single prominent bend.
Collapse
Affiliation(s)
- Caleb J Anderson
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain.,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Guillaume Briand
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL University, 10, rue Vauquelin, 75231 Paris de cedex 05, France
| | - Olivier Dauchot
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL University, 10, rue Vauquelin, 75231 Paris de cedex 05, France
| | - Alberto Fernández-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain.,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.,Institute for Complex Systems (UBICS), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Wang Y, Gao YW, Tian WD, Chen K. Obstacle-induced giant jammed aggregation of active semiflexible filaments. Phys Chem Chem Phys 2022; 24:23779-23789. [PMID: 36156612 DOI: 10.1039/d2cp02819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Filaments driven by bound motor proteins and chains of self-propelled colloidal particles are a typical example of active polymers (APs). Due to deformability, APs exhibit very rich dynamic behaviors and collective assembling structures. Here, we are concerned with a basic question: how APs behave near a single obstacle? We find that, in the presence of a big single obstacle, the assembly of APs becomes a two-state system, i.e. APs either gather nearly completely together into a giant jammed aggregate (GJA) on the surface of the obstacle or distribute freely in space. No partial aggregation is observed. Such a complete aggregation/collection is unexpected since it happens on a smooth convex surface instead of, e.g., a concave wedge. We find that the formation of a GJA experiences a process of nucleation and the curves of the transition between the GJA and the non-aggregate state form hysteresis-like loops. Statistical analysis of massive data on the growing time, chirality and angular velocity of both the GJAs and the corresponding nuclei shows the strong random nature of the phenomenon. Our results provide new insights into the behavior of APs in contact with porous media and also a reference for the design and application of polymeric active materials.
Collapse
Affiliation(s)
- Ying Wang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Yi-Wen Gao
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China. .,School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
6
|
Mallory SA, Omar AK, Brady JF. Dynamic overlap concentration scale of active colloids. Phys Rev E 2021; 104:044612. [PMID: 34781543 DOI: 10.1103/physreve.104.044612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/06/2021] [Indexed: 11/07/2022]
Abstract
By introducing the notion of a dynamic overlap concentration scale, we identify additional universal features of the mechanical properties of active colloids. We codify these features by recognizing that the characteristic length scale of an active particle's trajectory, the run length, introduces a concentration scale ϕ^{*}. Large-scale simulations of repulsive active Brownian particles (ABPs) confirm that this run-length dependent concentration, the trajectory-space analog of the overlap concentration in polymer solutions, delineates distinct concentration regimes in which interparticle collisions alter particle trajectories. Using ϕ^{*} and concentration scales associated with colloidal jamming, the mechanical equation of state for ABPs collapses onto a set of principal curves that contain several overlooked features. The inclusion of these features qualitatively alters previous predictions of the behavior for active colloids, as we demonstrate by computing the spinodal for a suspension of purely repulsive ABPs. Our findings suggest that dynamic overlap concentration scales should help unravel the behavior of active and driven systems.
Collapse
Affiliation(s)
- Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennyslvania 16802, USA
| | - Ahmad K Omar
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
7
|
Qian BS, Tian WD, Chen K. Absorption of self-propelled particles into a dense porous medium. Phys Chem Chem Phys 2021; 23:20388-20397. [PMID: 34491254 DOI: 10.1039/d1cp01234g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the absorption of self-propelled particles into a finite-size dense porous medium, which is mimicked by an obstacle array. We find that, depending on the competition of the propelling strength versus the repulsive barrier formed by obstacles and the contrast between the characteristic time scales of permeation and propelling persistence, the absorption process exhibits three distinct types of behavior. In Type I and II behavior, the propelling strength is not large enough to surmount the barrier, and hence particles transport in the medium by barrier-hopping dynamics. The initial permeation of particles toward the medium center is phenomenologically similar to a normal slow diffusion process. But, surprisingly, after the initial permeation process, a concentrated nucleus of particle aggregates forms and grows at the medium center in Type I, due to the long propelling persistence. Such an abnormal "nucleation" phenomenon does not appear in Type II, in which the propelling persistence is low. When the propelling strength is very high (Type III), particles transport smoothly in the medium, hence the initial slow diffusion process disappears and small particle clusters form and merge randomly in the medium. Our results provide a foundation for applications of active objects in a complex environment and also suggest the possible usage of a porous medium, for example, in the selection or sorting of active matter.
Collapse
Affiliation(s)
- Bing-Shuang Qian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China. .,School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
8
|
Mousavi SM, Gompper G, Winkler RG. Active bath-induced localization and collapse of passive semiflexible polymers. J Chem Phys 2021; 155:044902. [PMID: 34340385 DOI: 10.1063/5.0058150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The conformational and dynamical properties of a passive polymer embedded in a bath of active Brownian particles (ABPs) are studied by Langevin dynamics simulations. Various activities and ABP concentrations below and above the critical values for motility-induced phase separation (MIPS) are considered. In a homogeneous ABP fluid, the embedded polymer swells with increasing bath activity, with stronger swelling for larger densities. The polymer dynamics is enhanced, with the diffusion coefficient increasing by a power-law with increasing activity, where the exponent depends on the ABP concentration. For ABP concentrations in the MIPS regime, we observe a localization of the polymer in the low-density ABP phase associated with polymer collapse for moderate activities and a reswelling for high activities accompanied by a preferred localization in the high-density ABP phase. Localization and reswelling are independent of the polymer stiffness, with stiff polymers behaving similarly to flexible polymers. The polymer collapse is associated with a slowdown of its dynamics and a significantly smaller center-of-mass diffusion coefficient. In general, the polymer dynamics can only partially be described by an effective (bath) temperature. Moreover, the properties of a polymer embedded in a homogeneous active bath deviate quantitatively from those of a polymer composed of active monomers, i.e., linear chains of ABPs; however, such a polymer exhibits qualitatively similar activity-dependent features.
Collapse
Affiliation(s)
- S Mahdiyeh Mousavi
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
9
|
Computer Simulation Study on Adsorption and Conformation of Polymer Chains Driven by External Force. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2491-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
11
|
Pan JX, Wei H, Qi MJ, Wang HF, Zhang JJ, Tian WD, Chen K. Vortex formation of spherical self-propelled particles around a circular obstacle. SOFT MATTER 2020; 16:5545-5551. [PMID: 32510067 DOI: 10.1039/d0sm00277a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A vortex is a common ratchet phenomenon in active systems. The spatial symmetry is usually broken by introducing asymmetric shapes or spontaneously by collective motion in the presence of hydrodynamic interactions or other alignment effects. Unexpectedly, we observe, by simulations, the formation of a vortex in the simplest model of a circular obstacle immersed in a bath of spherical self-propelled particles. No symmetry-breaking factors mentioned above are included in this model. The vortex forms only when the particle activity is high, i.e. large persistence. The obstacle size is also a key factor and the vortex only forms in a limited range of obstacle sizes. The sustainment of the vortex originates from the bias of the rotating particle cluster around the obstacle in accepting the incoming particles based on their propelling directions. Our results provide new understanding of and insights into the spontaneous symmetry-breaking and ratchet phenomena in active matter.
Collapse
Affiliation(s)
- Jun-Xing Pan
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Liu X, Jiang H, Hou Z. Non-monotonic dependence of polymer chain dynamics on active crowder size. J Chem Phys 2020; 152:204906. [PMID: 32486672 DOI: 10.1063/5.0007570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Configuration dynamics of flexible polymer chains is of ubiquitous importance in many biological processes. Here, we investigate a polymer chain immersed in a bath of size-changed active particles in two dimensional space using Langevin dynamics simulations. Particular attention is paid to how the radius of gyration Rg of the polymer chain depends on the size σc of active crowders. We find that Rg shows nontrivial non-monotonic dependence on σc: The chain first swells upon increasing σc, reaching a fully expanded state with maximum Rg, and then, Rg decreases until the chain collapses to a compact coil state if the crowder is large enough. Interestingly, the chain may oscillate between a collapse state and a stretched state at moderate crowder size. Analysis shows that it is the competition between two effects of active particles, one stretching the chain from inside due to persistence motion and the other compressing the chain from outside, that leads to the non-monotonic dependence. Besides, the diffusion of the polymer chain also shows nontrivial non-monotonic dependence on σc. Our results demonstrate the important interplay between particle activity and size associated with polymer configurations in active crowding environments.
Collapse
Affiliation(s)
- Xinshuang Liu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Liu X, Jiang H, Hou Z. Configuration dynamics of a flexible polymer chain in a bath of chiral active particles. J Chem Phys 2019; 151:174904. [DOI: 10.1063/1.5125607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xinshuang Liu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Shan WJ, Zhang F, Tian WD, Chen K. Assembly structures and dynamics of active colloidal cells. SOFT MATTER 2019; 15:4761-4770. [PMID: 31150037 DOI: 10.1039/c9sm00619b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many types of active matter are deformable, such as epithelial cells and bacteria. To mimic the feature of deformability, we built a model called an active colloidal cell (ACC), i.e. a vesicle enclosed with self-propelled particles (SPPs), which as a whole can move actively. Based on the model, we then study the role of deformability in the assembly structures and dynamics of ACCs by Langevin dynamics simulation. We find that deformability weakens the self-trapping effect and hence suppresses the clustering and phase separation of the deformable soft ACCs (sACCs). Instead of forming a large compact cluster like ordinary SPPs, sACCs pack into a loose network or porous structure in the phase-separation region. The condensed phase is liquid-like, in which sACCs are strongly compressed and deformed but still keep high motility. The interface between the gas and the condensed phases is blurry and unstable, and the effective interfacial energy is very low. Our work gives new insights into the role of deformability in the assembly of active matter and also provides a reference for further studies on different types of deformable active matter.
Collapse
Affiliation(s)
- Wen-Jie Shan
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | |
Collapse
|
15
|
Xia YQ, Shen ZL, Tian WD, Chen K. Unfolding of a diblock chain and its anomalous diffusion induced by active particles. J Chem Phys 2019; 150:154903. [PMID: 31005072 DOI: 10.1063/1.5095850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We study the structural and dynamical behavior of an A-B diblock chain in the bath of active Brownian particles (ABPs) by Brownian dynamics simulations in two dimensions. We are interested in the situation that the effective interaction between the A segments is attractive, while that between the B segments is repulsive. Therefore, in thermal (nonactive) equilibrium, the A block "folds" into a compact globule, while the B block is in the expanded coil state. Interestingly, we find that the A block could "unfold" sequentially like unknitting a sweater, driven by the surrounding ABPs when the propelling strength on them is beyond a certain value. This threshold value decreases and then levels off as the length of the B block increases. We also find a simple power-law relation between the unfolding time of the A block and the self-propelling strength and an exponential relation between the unfolding time and the length of the B block. Finally, we probe the translational and rotational diffusion of the chain and find that both of them show "super-diffusivity" in a large time window, especially when the self-propelling strength is small and the A block is in the folded state. Such super-diffusivity is due to the strong asymmetric distribution of ABPs around the chain. Our work provides new insights into the behavior of a polymer chain in the environment of active objects.
Collapse
Affiliation(s)
- Yi-Qi Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhuang-Lin Shen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|