1
|
Qi J, Huang Q, Yuan K, Fang H, Zhang L, Hu J. Evolution of Bulk Nanobubbles under Different Freezing Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16873-16880. [PMID: 37966887 DOI: 10.1021/acs.langmuir.3c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The freezing process of aqueous solutions plays a crucial role in various applications including cryopreservation, glaciers, and frozen materials. However, less research has focused on the influence of nanoscale gas bubble formation or collapse in water during freezing, which may significantly impact the formation of ice crystals. Herein, we report for the first time that the freezing process can produce nanobubbles in aqueous solutions, and their size and number concentration could be changed by different cooling rates, i.e., the size would decrease as the cooling rate increased, and the maximum number concentration was found at the -80 °C system. Furthermore, increasing the dissolved gas content in the solution enhanced the production of nanobubbles, whereas for preexisting nanobubbles, the freezing resulted in a decrease in their number concentration, which was negatively correlated with the cooling rate. Our results indicated that a moderate cooling rate of -80 °C favored nanobubble generation, whereas a higher cooling rate was preferable for maintaining preexisting nanobubbles. Conversely, a lower cooling rate could be employed to eliminate preexisting nanobubbles. This study explored the evolution and stability of nanobubbles during the freezing process, providing valuable insights into the application or elimination of nanobubbles.
Collapse
Affiliation(s)
- Juncheng Qi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kaiwei Yuan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengxin Fang
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Xiangfu Laboratory, Jiashan 314102, China
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Perturbative vibration of the coupled hydrogen-bond (O:H-O) in water. Adv Colloid Interface Sci 2022; 310:102809. [PMID: 36356480 DOI: 10.1016/j.cis.2022.102809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Perturbation Raman spectroscopy has underscored the hydrogen bond (O:H-O or HB) cooperativity and polarizability (HBCP) for water, which offers a proper parameter space for the performance of the HB and electrons in the energy-space-time domains. The OO repulsive coupling drives the O:H-O segmental length and energy to relax cooperatively upon perturbation. Mechanical compression shortens and stiffens the O:H nonbond while lengthens and softens the HO bond associated with polarization. However, electrification by an electric field or charge injection, or molecular undercoordination at a surface, relaxes the O:H-O in a contrasting way to the compression with derivation of the supersolid phase that is viscoelastic, less dense, thermally diffusive, and mechanically and thermally more stable. The HO bond exhibits negative thermal expansivity in the liquid and the ice-I phase while its length responds in proportional to temperature in the quasisolid phase. The O:H-O relaxation modifies the mass densities, phase boundaries, critical temperatures and the polarization endows the slipperiness of ice and superfluidity of water at the nanometer scale. Protons injection by acid solvation creates the H↔H anti-HB and introduction of electron lone pairs derives the O:⇔:O super-HB into the solutions of base or H2O2 hydrogen-peroxide. The repulsive H↔H and O:⇔:O interactions lengthen the solvent HO bond while the solute HO bond contracts because its bond order loss. Differential phonon spectroscopy quantifies the abundance, structure order, and stiffness of the bonds transiting from the mode of pristine water to the perturbed states. The HBCP and the perturbative spectroscopy have enabled the dynamic potentials for the relaxing O:H-O bond. Findings not only amplified the power of the Raman spectroscopy but also substantiated the understanding of anomalies of water subjecting to perturbation.
Collapse
|
3
|
Hu Q, Zhao H, Ouyang S, Liang Y, Yang H, Zhu X. The water structure around chloride ion investigated from D2O ↔ H2O substitution effect. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Mu L, Yang Y, Liu J, Du W, Chen J, Shi G, Fang H. Hydrated cation-π interactions of π-electrons with hydrated Li +, Na +, and K + cations. Phys Chem Chem Phys 2021; 23:14662-14670. [PMID: 34213518 DOI: 10.1039/d1cp01609a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cation-π interactions are essential for many chemical, biological, and material processes, and these processes usually involve an aqueous salt solution. However, there is still a lack of a full understanding of the hydrated cation-π interactions between the hydrated cations and the aromatic ring structures on the molecular level. Here, we report a molecular picture of hydrated cation-π interactions, by using the calculations of density functional theory (DFT). Specifically, the graphene sheet can distort the hydration shell of the hydrated K+ to interact with K+ directly, which is hereafter called water-cation-π interactions. In contrast, the hydration shell of the hydrated Li+ is quite stable and the graphene sheet interacts with Li+ indirectly, mediated by water molecules, which we hereafter call the cation-water-π interactions. The behavior of hydrated cations adsorbed on a graphene surface is mainly attributed to the competition between the cation-π interactions and hydration effects. These findings provide valuable details of the structures and the adsorption energy of hydrated cations adsorbed onto the graphene surface.
Collapse
Affiliation(s)
- Liuhua Mu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Yang
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China.
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jige Chen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute and State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Haiping Fang
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China. and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
5
|
|
6
|
Sun CQ. Water electrification: Principles and applications. Adv Colloid Interface Sci 2020; 282:102188. [PMID: 32610204 DOI: 10.1016/j.cis.2020.102188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023]
Abstract
Deep engineering of liquid water by charge and impurity injection, charged support, current flow, hydrophobic confinement, or applying a directional field has becoming increasingly important to the mankind toward overcoming energy and environment crisis. One can mediate the processes or temperatures of molecular evaporation for clean water harvesting, HO bond dissociation for H2 fuel generation, solidification for living-organism cryopreservation, structure stiffening for bioengineering, etc., with mechanisms being still puzzling. We show that the framework of "hydrogen bonding and electronic dynamics" has substantiated the progress in the fundamental issues and the aimed engineering. The segmental disparity of the coupled hydrogen bond (O:HO or HB with ":" being lone pair of oxygen) resolves their specific-heat curves and turns out a quasisolid phase (QS, bound at -15 and 4 °C). Electrification shows dual functionality that not only aligns, orders, polarizes water molecules but also stretches the O:HO bond. The O:HO segmental cooperative relaxation and polarization shift the QS boundary through Einstein's relation, ΔΘDx ∝ Δωx, resulting in a gel-like, viscoelastic, and stable supersolid phase with raised melting point Tm and lowered temperatures for vaporization TV and ice nucleation TN. The supersolidity and electro structure ordering provide additional forces to reinforce Armstrong's water bridge. QS dispersion and the secondary effect of electrification such as compression define the TN for Dufour's electro-freezing. The TV depression, surface stress disruption, and electrostatic attraction raise Asakawa's molecular evaporability. Composition of opposite, compatible fields eases the HO dissociation and soil wetting. Progress evidences not only the essentiality of the coupled O:HO bond theory but also the feasibility of engineering water and solutions by programmed electrification.
Collapse
Affiliation(s)
- Chang Q Sun
- School of EEE, Nanyang Technological University, 639798, Singapore; School of Material Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
7
|
Yang X, Peng C, Li L, Bo M, Sun Y, Huang Y, Sun CQ. Multifield-resolved phonon spectrometrics: structured crystals and liquids. PROG SOLID STATE CH 2019. [DOI: 10.1016/j.progsolidstchem.2019.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sun CQ, Huang Y, Zhang X. Hydration of Hofmeister ions. Adv Colloid Interface Sci 2019; 268:1-24. [PMID: 30921543 DOI: 10.1016/j.cis.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023]
Abstract
Water dissolves salt into ions and then hydrates the ions to form an aqueous solution. Hydration of ions deforms the hydrogen bonding network and triggers the solution with what the pure water never shows such as conductivity, molecular diffusivity, thermal stability, surface stress, solubility, and viscosity, having enormous impact to many branches in biochemistry, chemistry, physics, and energy and environmental industry sectors. However, regulations for the solute-solute-solvent interactions are still open for exploration. From the perspective of the screened ionic polarization and O:H-O bond relaxation, this treatise features the recent progress and a perspective in understanding the hydration dynamics of Hofmeister ions in the typical YI, NaX, ZX2, and NaT salt solutions (Y = Li, Na, K, Rb, Cs; X = F, Cl, Br, I; Z = Mg, Ca, Ba, Sr; T = ClO4, NO3, HSO4, SCN). Phonon spectrometric analysis turned out the f(C) number fraction of bonds transition from the mode of deionized water to the hydrating. The linear f(C) ∝ C form features the invariant hydration volume of small cations that are fully-screened by their hydration H2O dipoles. The nonlinear f(C) ∝ 1 - exp.(-C/C0) form describes that the number insufficiency of the ordered hydrating H2O dipoles partially screens the anions. Molecular anions show stronger yet shorter electric field of dipoles. The screened ionic polarization, inter-solute interaction, and O:H-O bond transition unify the solution conductivity, surface stress, viscosity, and critical energies for phase transition.
Collapse
|
9
|
Sun CQ, Yao C, Sun Y, Liu X, Fang H, Huang Y. (H, Li)Cl and LiOH hydration: Surface tension, solution conductivity and viscosity, and exothermic dynamics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Discriminative ionic capabilities on hydrogen-bond transition from the mode of ordinary water to (Mg, Ca, Sr)(Cl, Br)2 hydration. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Sun CQ. Unprecedented O:⇔:O compression and H↔H fragilization in Lewis solutions. Phys Chem Chem Phys 2019; 21:2234-2250. [PMID: 30656293 DOI: 10.1039/c8cp06910g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Charge injection in terms of lone pairs ':', protons, and ions upon acid and base solvation mediates the hydrogen bonding network and properties of Lewis solutions, and is ubiquitously important in many subject areas of Chemical Physics. This work features the recent progress and future trends in this aspect with a focus on the solute-solvent interactions and hydrogen bond (O:H-O or HB) transition from the vibration mode of ordinary water to the hydrating states. A combination of the O:H-O bond cooperativity notion, differential phonon spectrometrics, calorimetric detection, and quantum computations clarified the solute capabilities of O:H-O bond transition in HX and YOH (X = Cl, Br, I and Y = Li, Na, K) solutions. The H+ and the lone pair do not stay alone to move or shuttle freely between adjacent H2O molecules, but they are attached to a H2O molecule to form (H3O+ and OH-)·4H2O tetrahedral motifs, which transits an O:H-O bond into the H↔H anti-HB point breaker in acidic solutions and into the O:⇔:O super-HB compressor and polarizer in basic solutions, respectively. H↔H disrupts the solvent network and surface stress, having the same effect of liquid heating on HB bond relaxation and thermal fluctuation on surface stress. The O:⇔:O compression lengthens and weakens the solute H-O bond, which heats up the solution during solvation. The H-O bonds due to H3O+ contract by 3% and due to OH- shrink by 10%. The Y+ and X- ions perform in the same manner as they do in salt solutions to form hydration shells through electrostatic polarization and hydrating H2O dipolar screen shielding. Focusing more on the O:H-O bond transition would be even more promising and revealing than on the manner and mobility of lone pair and proton transportation.
Collapse
Affiliation(s)
- Chang Q Sun
- EBEAM, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|