1
|
Djavani-Tabrizi I, Lindkvist TT, Langeland J, Kjær C, Graham M, Kjaergaard HG, Nielsen SB. Tautomer-Selective Fluorescence Spectroscopy of Oxyluciferin Anions. J Am Chem Soc 2024; 146:26975-26982. [PMID: 39298372 DOI: 10.1021/jacs.4c08596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Bioluminescence in fireflies and related insects arises as emission from the fluorophore oxyluciferin, yet the color of the emission in these insects can range from red to green. The chromophore's microenvironment or multiple tautomeric forms may be responsible for the color tuning; however, these effects are difficult to separate in condensed phases. To investigate the role of oxyluciferin tautomerization in the color tuning mechanism, gas-phase spectroscopy eliminates solvent effects and allows us to study the fluorescence from individual tautomers. Using a home-built mass-spectrometry setup with a cylindrical ion trap cooled with liquid nitrogen, we measure fluorescence from the enol-locked form of oxyluciferin in the gas phase and characterize the photophysics of both keto and enol forms. At 100 K, the enol-locked form has an emission maximum of 564 ± 1 nm, coinciding with a previously reported assignment in oxyluciferin. We measure the absorption spectrum and find a maximum at 560.5 ± 0.5 nm, which implies a Stokes shift of 110 cm-1. The absorption spectrum is compared to Franck-Condon simulated spectra that identify one dominant vibrational mode in the transition. Additionally, we ultimately separated the emission by the enol and keto forms present in the trap by selectively exciting each form. We demonstrate that fluorescence measured close to the 0-0 transition limits the reheating of the ions, thereby providing the coldest ions and therefore the narrowest emission spectra. These experimental data are also crucial benchmarks for computational studies, offering actual emission spectra in the gas phase for both tautomeric forms. Thus, our findings serve as essential reference points for excited-state calculations aimed at understanding the color tuning mechanism of bioluminescence computationally.
Collapse
Affiliation(s)
- Iden Djavani-Tabrizi
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Thomas Toft Lindkvist
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Marlowe Graham
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| |
Collapse
|
2
|
Porwal VK, Carof A, Ingrosso F. Hydration effects on the vibrational properties of carboxylates: From continuum models to QM/MM simulations. J Comput Chem 2023. [PMID: 37300426 DOI: 10.1002/jcc.27171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
The presence of carboxyl groups in a molecule delivers an affinity to metal cations and a sensitivity to the chemical environment, especially for an environment that can give rise to intermolecular hydrogen bonds. Carboxylate groups can also induce intramolecular interactions, such as the formation of hydrogen bonds with donor groups, leading to an impact on the conformational space of biomolecules. In the latter case, the protonation state of the amino groups plays an important role. In order to provide an accurate description of the modifications induced in a carboxylated molecule by the formation of hydrogen bonds, one needs a compromise between a quantum chemical description of the system and the necessity to take into account explicit solvent molecules. In this work, we propose a bottom-up approach to study the conformational space and the carboxylate stretching band of (bio)organic anions. Starting from the anions in a continuum solvent, we then move to calculations using a microsolvation approach including one explicit water molecule per polar group, immersed in a continuum. Finally, we run QM/MM molecular dynamics simulations to analyze the solvation properties and to explore the anions conformational space. The results thus obtained are in good agreement with the description given by the microsolvation approach and they bring a more detailed description of the solvation shell and of the intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Vishal Kumar Porwal
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, Nancy, France
| | - Antoine Carof
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, Nancy, France
| | - Francesca Ingrosso
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, Nancy, France
| |
Collapse
|
3
|
Cerezo J, García-Iriepa C, Santoro F, Navizet I, Prampolini G. Unraveling the contributions to the spectral shape of flexible dyes in solution: insights on the absorption spectrum of an oxyluciferin analogue. Phys Chem Chem Phys 2023; 25:5007-5020. [PMID: 36722876 DOI: 10.1039/d2cp05701h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We present a computational investigation of the absorption spectrum in water of 5,5-spirocyclopropyl-oxyluciferin (5,5-CprOxyLH), an analogue of the emitter compound responsible for the bioluminescence in fireflies. Several factors participate in determining the 5,5-CprOxyLH's spectral shape: (i) the contribution of the four close-energy excited states, which show significant non-adiabatic couplings, (ii) the flexible molecular structure and (iii) the specific interactions established with the surrounding environment, which strongly couple the protic solvent dynamics with the dye's spectral response. To tackle the challenge to capture and dissect the role of all these effects we preliminarily investigate the role of non-adiabatic couplings with quantum dynamics simulations and a linear vibronic coupling model in the gas phase. Then, we account for both the molecular flexibility and solvent interactions by resorting to a mixed quantum classical protocol, named Adiabatic Molecular Dynamics generalized Vertical Gradient (Ad-MD|gVG), which is built on a method recently proposed by some of us. It is rooted in the partition between stiff degrees of freedom of the dye, accounted for at the vibronic level within the harmonic approximation, and flexible degrees of freedom of the solute (and of the solvent), described classically through a sampling based on Molecular Dynamics (MD). Ad-MD|gVG avoids spurious effects arising in the excited state Hessians due to non-adiabatic couplings, and can therefore be applied to account for the contributions of the first four excited states to the 5,5-CprOxyLH absorption spectrum. The final simulated spectrum is in very good agreement with the experiment, especially when the MD is driven by a refined quantum-mechanically derived force-field. More importantly, the origin of each separate contribution to the spectral shape is appropriately accounted for, paving the way to future applications of the method to more complex systems or alternative spectroscopies, as emission or circular dichroism.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Cristina García-Iriepa
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Reactividad y Estructura Molecular (RESMOL), 28806 Alcalá de Henares (Madrid), Spain. .,Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28806 Alcalá de Henares (Madrid), Spain
| | - Fabrizio Santoro
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Isabelle Navizet
- Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Giacomo Prampolini
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| |
Collapse
|
4
|
Satalkar V, Benassi E, Mao Y, Pan X, Ran C, Chen X, Shao Y. Computational Investigation of Substituent Effects on the Fluorescence Wavelengths of Oxyluciferin Analogs. J Photochem Photobiol A Chem 2022; 431:114018. [PMID: 36407037 PMCID: PMC9673899 DOI: 10.1016/j.jphotochem.2022.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxyluciferin, which is the light emitter for firefly bioluminescence, has been subjected to extensive chemical modifications to tune its emission wavelength and quantum yield. However, the exact mechanisms for various electron-donating and withdrawing groups to perturb the photophysical properties of oxyluciferin analogs are still not fully understood. To elucidate the substituent effects on the fluorescence wavelength of oxyluciferin analogs, we applied the absolutely localized molecular orbitals (ALMO)-based frontier orbital analysis to assess various types of interactions (i.e. permanent electrostatics/exchange repulsion, polarization, occupied-occupied orbital mixing, virtual-virtual orbital mixing, and charge-transfer) between the oxyluciferin and substituent orbitals. We suggested two distinct mechanisms that can lead to red-shifted oxyluciferin emission wavelength, a design objective that can help increase the tissue penetration of bioluminescence emission. Within the first mechanism, an electron-donating group (such as an amino or dimethylamino group) can contribute its highest occupied molecular orbital (HOMO) to an out-of-phase combination with oxyluciferin's HOMO, thus raising the HOMO energy of the substituted analog and narrowing its HOMO-LUMO gap. Alternatively, an electron-withdrawing group (such as a nitro or cyano group) can participate in an in-phase virtual-virtual orbital mixing of fragment LUMOs, thus lowering the LUMO energy of the substituted analog. Such an ALMO-based frontier orbital analysis is expected to lead to intuitive principles for designing analogs of not only the oxyluciferin molecule, but also many other functional dyes.
Collapse
Affiliation(s)
- Vardhan Satalkar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Enrico Benassi
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA 02129, USA
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, 117597, Singapore
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
5
|
Al-Handawi MB, Polavaram S, Kurlevskaya A, Commins P, Schramm S, Carrasco-López C, Lui NM, Solntsev KM, Laptenok SP, Navizet I, Naumov P. Spectrochemistry of Firefly Bioluminescence. Chem Rev 2022; 122:13207-13234. [PMID: 35926147 DOI: 10.1021/acs.chemrev.1c01047] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical reactions underlying the emission of light in fireflies and other bioluminescent beetles are some of the most thoroughly studied processes by scientists worldwide. Despite these remarkable efforts, fierce academic arguments continue around even some of the most fundamental aspects of the reaction mechanism behind the beetle bioluminescence. In an attempt to reach a consensus, we made an exhaustive search of the available literature and compiled the key discoveries on the fluorescence and chemiluminescence spectrochemistry of the emitting molecule, the firefly oxyluciferin, and its chemical analogues reported over the past 50+ years. The factors that affect the light emission, including intermolecular interactions, solvent polarity, and electronic effects, were analyzed in the context of both the reaction mechanism and the different colors of light emitted by different luciferases. The collective data points toward a combined emission of multiple coexistent forms of oxyluciferin as the most probable explanation for the variation in color of the emitted light. We also highlight realistic research directions to eventually address some of the remaining questions related to firefly bioluminescence. It is our hope that this extensive compilation of data and detailed analysis will not only consolidate the existing body of knowledge on this important phenomenon but will also aid in reaching a wider consensus on some of the mechanistic details of firefly bioluminescence.
Collapse
Affiliation(s)
- Marieh B Al-Handawi
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Srujana Polavaram
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Anastasiya Kurlevskaya
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Patrick Commins
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Schramm
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nathan M Lui
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyril M Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sergey P Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Isabelle Navizet
- Univ. Gustave Eiffel, Univ. Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Panče Naumov
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
6
|
Ait Tayeb MA, Tchouar N, Miannay FA, Idrissi A. Effect of the mixture composition of C4mimBF4/acetonitrile on the charge transfer in Coumarin 153: DFT and TD-DFT analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Borrego-Sánchez A, Zemmouche M, Carmona-García J, Francés-Monerris A, Mulet P, Navizet I, Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air-Water Interface. J Chem Theory Comput 2021; 17:3571-3582. [PMID: 33974417 PMCID: PMC8444339 DOI: 10.1021/acs.jctc.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Theoretical determinations of absorption cross sections (σ) in the gas phase and molar extinction coefficients (ε) in condensed phases (water solution, interfaces or surfaces, protein or nucleic acids embeddings, etc.) are of interest when rates of photochemical processes, J = ∫ ϕ(λ) σ(λ) I(λ) dλ, are needed, where ϕ(λ) and I(λ) are the quantum yield of the process and the irradiance of the light source, respectively, as functions of the wavelength λ. Efficient computational strategies based on single-reference quantum-chemistry methods have been developed enabling determinations of line shapes or, in some cases, achieving rovibrational resolution. Developments are however lacking for strongly correlated problems, with many excited states, high-order excitations, and/or near degeneracies between states of the same and different spin multiplicities. In this work, we define and compare the performance of distinct computational strategies using multiconfigurational quantum chemistry, nuclear sampling of the chromophore (by means of molecular dynamics, ab initio molecular dynamics, or Wigner sampling), and conformational and statistical sampling of the environment (by means of molecular dynamics). A new mathematical approach revisiting previous absolute orientation algorithms is also developed to improve alignments of geometries. These approaches are benchmarked through the nπ* band of acrolein not only in the gas phase and water solution but also in a gas-phase/water interface, a common situation for instance in atmospheric chemistry. Subsequently, the best strategy is used to compute the absorption band for the adduct formed upon addition of an OH radical to the C6 position of uracil and compared with the available experimental data. Overall, quantum Wigner sampling of the chromophore with molecular dynamics sampling of the environment with CASPT2 electronic-structure determinations arise as a powerful methodology to predict meaningful σ(λ) and ε(λ) band line shapes with accurate absolute intensities.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto
Andaluz de Ciencias de la Tierra, CSIC-University
of Granada, Av. de las
Palmeras 4, 18100 Armilla, Granada, Spain
| | - Madjid Zemmouche
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Javier Carmona-García
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| | - Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departamento
de Química Física, Universitat
de València, C/Dr.
Moliner 50, 46100 Burjassot, Spain
| | - Pep Mulet
- Departamento
de Matemáticas Área de Matemática Aplicada Facultad
de Matemáticas C/Dr. Moliner, 50 46100 Burjassot, Spain
| | - Isabelle Navizet
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| |
Collapse
|
8
|
Noguchi Y, Hiyama M, Shiga M, Akiyama H, Sugino O. Quantum-mechanical hydration plays critical role in the stability of firefly oxyluciferin isomers: State-of-the-art calculations of the excited states. J Chem Phys 2021; 153:201103. [PMID: 33261487 DOI: 10.1063/5.0031356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stabilizing mechanisms of three possible isomers (phenolate-keto, phenolate-enol, and phenol-enolate) of the oxyluciferin anion hydrated with quantum explicit water molecules in the first singlet excited state were investigated using first-principles Born-Oppenheimer molecular dynamics simulations for up to 1.8 ns (or 3.7 × 106 MD steps), revealing that the surrounding water molecules were distributed to form clear single-layered structures for phenolate-keto and multi-layered structures for phenolate-enol and phenol-enolate isomers. The isomers employed different stabilizing mechanisms compared to the ground state. Only the phenolate-keto isomer became attracted to the water molecules in its excited state and was stabilized by increasing the number of hydrogen bonds with nearby water molecules. The most stable isomer in the excited state was the phenolate-keto, and the phenolate-enol and phenol-enolate isomers were higher in energy by ∼0.38 eV and 0.57 eV, respectively, than the phenolate-keto. This was in contrast to the case of ground state in which the phenolate-enol was the most stable isomer.
Collapse
Affiliation(s)
- Yoshifumi Noguchi
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561, Japan
| | - Miyabi Hiyama
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Motoyuki Shiga
- Center for Computational Science and E-Systems, Japan Atomic Energy Agency, 148-4 Kashiwanoha Campus, 178-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Hidefumi Akiyama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Sugino
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
9
|
Herbert JM. Dielectric continuum methods for quantum chemistry. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1519] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- John M. Herbert
- Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio USA
| |
Collapse
|
10
|
Mroginski MA, Adam S, Amoyal GS, Barnoy A, Bondar AN, Borin VA, Church JR, Domratcheva T, Ensing B, Fanelli F, Ferré N, Filiba O, Pedraza-González L, González R, González-Espinoza CE, Kar RK, Kemmler L, Kim SS, Kongsted J, Krylov AI, Lahav Y, Lazaratos M, NasserEddin Q, Navizet I, Nemukhin A, Olivucci M, Olsen JMH, Pérez de Alba Ortíz A, Pieri E, Rao AG, Rhee YM, Ricardi N, Sen S, Solov'yov IA, De Vico L, Wesolowski TA, Wiebeler C, Yang X, Schapiro I. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem Photobiol 2021; 97:243-269. [PMID: 33369749 DOI: 10.1111/php.13372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
Collapse
Affiliation(s)
| | - Suliman Adam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil S Amoyal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Barnoy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Veniamin A Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Department Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Ofer Filiba
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lukas Kemmler
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yigal Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.,MIGAL - Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Qays NasserEddin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy.,Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alberto Pérez de Alba Ortíz
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Pieri
- Aix-Marseille Univ, CNRS, ICR, Marseille, France
| | - Aditya G Rao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Niccolò Ricardi
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | | | - Christian Wiebeler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
de Almeida Barbosa NM, Gosset P, Réal E, Ledentu V, Didier P, Ferré N. pH-Dependent absorption spectrum of oxyluciferin analogues in the active site of firefly luciferase. Phys Chem Chem Phys 2020; 22:21731-21740. [PMID: 32985625 DOI: 10.1039/d0cp02514c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest for the identification of the light emitter(s) responsible for the firefly bioluminescence, the study of oxyluciferin analogues with controlled chemical and electronic structures is of particular importance. In this article, we report the results of our experimental and computational investigation of the pH-dependent absorption spectra characterizing three analogues bound into the luciferase cavity, together with adenosine-monophosphate (AMP). While the analogue microscopic pKa values do not differ much from their reference values, it turns out that the AMP protonation state is analogue-dependent and never doubly-deprotonated. A careful analysis of the interactions evidences the main role of E344 glutamic acid, as well as the flexibility of the cavity which can accommodate any oxyluciferin analogue. The consideration of the absorption spectra suggests that the oxyluciferin enolate form has to be excluded from the list of the bioluminescence reaction products.
Collapse
Affiliation(s)
| | - Pauline Gosset
- Université de Strasbourg, UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Strasbourg, France
| | - Eléonore Réal
- Université de Strasbourg, UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Strasbourg, France
| | | | - Pascal Didier
- Université de Strasbourg, UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Strasbourg, France
| | | |
Collapse
|
12
|
García-Iriepa C, Losantos R, Fernández-Martínez D, Sampedro D, Navizet I. Fungal Light Emitter: Understanding Its Chemical Nature and pH-Dependent Emission in Water Solution. J Org Chem 2020; 85:5503-5510. [PMID: 32202422 DOI: 10.1021/acs.joc.0c00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fungal bioluminescence is a fascinating natural process, standing out for the continuous conversion of chemical energy into light. The structure of fungal oxyluciferin (light emitter) was proposed in 2017, being different and more complex than other oxyluciferins. The complexity of fungal oxyluciferin arises from diverse equilibria such as keto/enol tautomerization or deprotonation equilibria of four titratable groups. For this reason, still some crucial details of its structure remain unexplored. To obtain further structural information, a combined experimental and computational study of natural and three synthetic fungal oxyluciferin analogues has been performed. Here, we state the most stable chemical form of fungal oxyluciferin regarding its keto and enol tautomers, in the ground and excited states. We propose the (3Z,5E)-6-(3,4-dihydroxyphenyl)-4-hydroxy-2-oxohexa-3,5-dienoic acid form as the light emitter (fluorescent state) in water solution. Moreover, we show that chemical modifications on fungal oxyluciferin can affect the relative stability of the conformers. Furthermore, we show the clear effect of pH on emission. General conclusions about the role of these titratable groups in emission modulation have been drawn, such as the key role of dihydroxyphenyl deprotonation. This study is key to further analyze the properties of fungal bioluminescence and propose novel synthetic analogues.
Collapse
Affiliation(s)
- Cristina García-Iriepa
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France.,Departamento de Quı́mica Analı́tica, Quı́mica Fı́sica e Ingenierı́a Quı́mica, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Raúl Losantos
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Diana Fernández-Martínez
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Diego Sampedro
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Isabelle Navizet
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France.,MSME, Univ Gustave Eiffel, UPEC, CNRS, F-77454 Marne-la-Vallée, France
| |
Collapse
|
13
|
Sahihi M, Sanz García J, Navizet I. Bioluminescent Nanoluciferase–Furimamide Complex: A Theoretical Study on Different Protonation States. J Phys Chem B 2020; 124:2539-2548. [DOI: 10.1021/acs.jpcb.9b11597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mehdi Sahihi
- MSME, Univ Gustave Eiffel, UPEC, CNRS, F-77454 Marne-la-Vallée, France
| | - Juan Sanz García
- MSME, Univ Gustave Eiffel, UPEC, CNRS, F-77454 Marne-la-Vallée, France
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, UPEC, CNRS, F-77454 Marne-la-Vallée, France
| |
Collapse
|
14
|
Zemmouche M, García-Iriepa C, Navizet I. Light emission colour modulation study of oxyluciferin synthetic analogues via QM and QM/MM approaches. Phys Chem Chem Phys 2020; 22:82-91. [DOI: 10.1039/c9cp04687a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Study of emission spectra of three analogues of firefly oxyluciferin in gas phase, in water (PCM) and in protein.
Collapse
Affiliation(s)
- Madjid Zemmouche
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Échelle
- MSME UMR 8208 CNRS
- UPEM
- 77454 Marne-la-Vallée
| | - Cristina García-Iriepa
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Échelle
- MSME UMR 8208 CNRS
- UPEM
- 77454 Marne-la-Vallée
| | - Isabelle Navizet
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Échelle
- MSME UMR 8208 CNRS
- UPEM
- 77454 Marne-la-Vallée
| |
Collapse
|
15
|
Manuel de Almeida Barbosa N, Zemmouche M, Gosset P, García‐Iriepa C, Ledentu V, Navizet I, Didier P, Ferré N. pH‐Dependent Absorption Spectrum of Oxyluciferin Analogues in the Presence of Adenosine Monophosphate. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Madjid Zemmouche
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi ÉchelleMSME UMR 8208 CNRS, UPEM 5 bd Descartes 77454 Marne-la-Vallée France
| | - Pauline Gosset
- Université de Strasbourg, CNRSLaboratoire de Bioimagerie et Pathologies UMR 7021 67034 Strasbourg France
| | - Cristina García‐Iriepa
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi ÉchelleMSME UMR 8208 CNRS, UPEM 5 bd Descartes 77454 Marne-la-Vallée France
- Departmento de Química Analítica, Química Física e Ingeniería QuímicaUniversidad de Alcalá, Ctra. Madrid-Barcelona Km 33,600 28871 Alcalá de Henares Spain
| | | | - Isabelle Navizet
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi ÉchelleMSME UMR 8208 CNRS, UPEM 5 bd Descartes 77454 Marne-la-Vallée France
| | - Pascal Didier
- Université de Strasbourg, CNRSLaboratoire de Bioimagerie et Pathologies UMR 7021 67034 Strasbourg France
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR 13013 Marseille France
| |
Collapse
|
16
|
Noguchi Y, Hiyama M, Shiga M, Akiyama H, Sugino O. Photoabsorption Spectra of Aqueous Oxyluciferin Anions Elucidated by Explicit Quantum Solvent. J Chem Theory Comput 2019; 15:5474-5482. [DOI: 10.1021/acs.jctc.9b00392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshifumi Noguchi
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561, Japan
| | - Miyabi Hiyama
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Motoyuki Shiga
- Center for Computational Science and E-Systems, Japan Atomic Energy Agency, 148-4 Kashiwanoha Campus, 178-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Hidefumi Akiyama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Sugino
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
17
|
Effect of Protein Conformation and AMP Protonation State on Fireflies' Bioluminescent Emission. Molecules 2019; 24:molecules24081565. [PMID: 31009993 PMCID: PMC6514813 DOI: 10.3390/molecules24081565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
The emitted color in fireflies’ bioluminescent systems depends on the beetle species the system is extracted from and on different external factors (pH, temperature…) among others. Controlling the energy of the emitted light (i.e., color) is of crucial interest for the use of such bioluminescent systems. For instance, in the biomedical field, red emitted light is desirable because of its larger tissue penetration and lower energies. In order to investigate the influence of the protein environment and the AMP protonation state on the emitted color, the emission spectra of the phenolate-keto and phenolate-enol oxyluciferin forms have been simulated by means of MD simulations and QM/MM calculations, considering: two different protein conformations (with an open or closed C-terminal domain with respect to the N-terminal) and two protonation states of AMP. The results show that the emission spectra when considering the protein characterized by a closed conformation are blue-shifted compared to the open conformation. Moreover, the complete deprotonation of AMP phosphate group (AMP2−) can also lead to a blue-shift of the emission spectra but only when considering the closed protein conformation (open form is not sensitive to changes of AMP protonation state). These findings can be reasoned by the different interactions (hydrogen-bonds) found between oxyluciferin and the surrounding (protein, AMP and water molecules). This study gets partial insight into the possible origin of the emitted color modulation by changes of the pH or luciferase conformations.
Collapse
|