1
|
Ariyarathna IR. Electronic structure analysis and DFT benchmarking of Rydberg-type alkali-metal-crown ether, -cryptand, and -adamanzane complexes. Phys Chem Chem Phys 2024; 26:16989-16997. [PMID: 38666396 DOI: 10.1039/d4cp00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Density functional theory (DFT) and electron propagator theory (EPT) calculations were performed to study ground and excited electronic structures of alkali-metal (M) coordinated 9-crown-3, 24-crown-8, [2.1.1]cryptand, o-Me2-1.1.1, and 36Adamanzane complexes. Each complex bears an expanded electron in the periphery and occupies diffuse 1p-, 1d-, 1f-type molecular orbitals (or superatomic 1P, 1D, 1F orbitals) in excited electronic states. The calculated superatomic shell model of the M(9-crown-3)2 is 1S, 1P, 1D, 1F, 2S, 2P, 2D, 1G and it is held by all other complexes up to the studied 1F level. Due to the highly diffuse nature of the electron, the ionization energies of these complexes are significantly lower (1.6-2.0 eV) and hence these complexes belong to the superalkali category. The ab initio EPT ionization energy and the excitation energies of the Li(9-crown-3)2 were used to evaluate DFT errors associated with a series of exchange correlation functionals that span multiple rungs of Jacob's ladder (i.e., GGA, meta-GGA, global GGA hybrid, meta-GGA hybrid, range-separated hybrid, double-hybrid). Among these, the best performing functional is the range-separated hybrid CAM-B3LYP and the errors are within 6% of high-level ab initio EPT results. The accuracy of CAM-B3LYP is indeed transferable to similar complexes and hence the findings are expected to accelerate the progression of studies of Rydberg-type systems.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Androutsopoulos A, Sader S, Miliordos E. Potential of Molecular Catalysts with Electron-Rich Transition Metal Centers for Addressing Long-Standing Chemistry Enigmas. J Phys Chem A 2024; 128:4401-4411. [PMID: 38797970 DOI: 10.1021/acs.jpca.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molecular complexes with electron-rich metal centers are highlighted as potential catalysts for the following five important chemical transformations: selective conversion of methane to methanol, capture and utilization of carbon dioxide, fixation of molecular nitrogen, water splitting, and recycling of perfluorochemicals. Our initial focus lies on negatively charged metal centers and ligands that can stabilize anionic metal atoms. Catalysts with electron-rich metal atoms (CERMAs) can sustain catalytic cycles with a "ping-pong" mechanism, where one or more electrons are transferred from the metal center to the substrate and back. The donated electrons can activate the chemical bonds of the substrate by populating its antibonding orbitals. At the last step of the catalytic cycle, the electrons return to the metal and the product interacts only weakly with the formed anion, which enables the solvent molecules to remove the product fast from the catalytic cycle and prevent subsequent unfavorable reactions. This process resembles electrocatalysis, but the metal serves as both an anode and a cathode (molecular electrocatalysis). We also analyze the usage of CERMAs as the base of Frustrated Lewis pairs proposing a new type of bimetallic catalysts. This Featured Article aspires to initiate systematic experimental and theoretical studies on CERMAs and their reactivity, the potential of which has probably been underestimated in the literature.
Collapse
Affiliation(s)
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | | |
Collapse
|
3
|
Ariyarathna IR. Ground and excited electronic structures of electride and alkalide units: The cases of Metal-Tren, -Azacryptand, and -TriPip222 complexes. J Comput Chem 2024; 45:655-662. [PMID: 38087935 DOI: 10.1002/jcc.27265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 03/02/2024]
Abstract
A systematic electronic structure analysis was conducted for M(L)n molecular electrides and their corresponding alkalide units M(L)n @M' (M/M' = Na, K; L = Tren, Azacryptand, TriPip222; n = 1, 2). All complexes belong to the "superalkali" category due to their low ionization potentials. The saturated molecular electrides display M+ (L)n - form with a greatly diffuse quasispherical electron cloud. They were identified as "superatoms" considering the contours of populating atomic-type molecular orbitals. The observed superatomic Aufbau order of M(Tren)2 is 1S, 1P, 1D, 1F, 2S, 2P, and 1G and it is consistent with those of M(Azacryptand) and M(TriPip222) up to the analyzed 1F level. Their excitation energies decrease gradually moving from M(Tren)2 to M(Azacryptand) and to M(TriPip222). The studied alkalide complexes carry [M(L)n ]+ @M'- ionic structure and their dissociation energies vary in the sequence of K(L)n @Na > Na(L)n @Na > K(L)n @K > Na(L)n @K. Similar to molecular electrides, the anions of alkalide units occupy electrons in diffuse Rydberg-like orbitals. In this work, excited states of [M(L)n @M']0/+/- and their trends are also analyzed.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
White MV, Claveau EE, Miliordos E, Vogiatzis KD. Electronic Structure and Ligand Effects on the Activation and Cleavage of N 2 on a Molybdenum Center. J Phys Chem A 2024; 128:2038-2048. [PMID: 38447072 DOI: 10.1021/acs.jpca.3c07801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Dinitrogen fixation under ambient conditions remains a challenge in the field of catalytic chemistry due to the inertness of N2. Nitrogenases and heterogeneous solid catalysts have displayed remarkable performance in the catalytic conversion of dinitrogen to ammonia. By introduction of molybdenum centers in molecular complexes, one of the most azophilic metals of the transitional metal series, moderate ammonia yields have been attained. Here, we present a combined multiconfigurational/density functional theory study that addresses how ligand fields of different strengths affect the binding and activation of dinitrogen on molybdenum atoms. First, we explored with MRCI computations the diatomic Mo-N and triatomic Mo-N2 molecular systems. Then, we performed a systematic examination on the stabilization effects introduced by external NH3 ligands, before we explore model neutral and charged complexes with different types of ligands (H2O, NH3, and PH3) and their consequences on the N2 binding and activation.
Collapse
Affiliation(s)
- Maria V White
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Konstantinos D Vogiatzis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
5
|
Alikhani ME, Janesko BG. A two-electron reducing reaction of CO 2 to an oxalate anion: a theoretical study of delocalized (presolvated) electrons in Al(CH 3) n(NH 3) m, n = 0-2 and m = 1-6, clusters. Phys Chem Chem Phys 2024; 26:7149-7156. [PMID: 38349025 DOI: 10.1039/d3cp06096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Presolvated electron possibility in three oxidation states of aluminum - Al(0), Al(I), and Al(II) - has been theoretically investigated for the Al + 6NH3, Al(CH3) + 5NH3, and Al(CH3)2 + 4NH3 reactions. It has been shown that the metal center adopts a tetrahedral shape for its most stable geometric structure, irrespective of the degree of Al oxidation states. Using different analysis techniques (highest occupied molecular orbital shapes, spin density distributions, and electron delocalization ranges), we showed that presolvated (delocalized) electrons are only formed in the Al(CH3)2(NH3)p coordination complexes when 2 ≤ p ≤ 4. It has also been evidenced that these delocalized electrons being powerful reducing agents allowed two CO2 molecules to be captured and form an oxalate ion in close contact with the [Al2(CH3)2(CH2)2(NH3)4]2+ dication core.
Collapse
Affiliation(s)
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S University Dr, Fort Worth, TX, USA.
| |
Collapse
|
6
|
Lu Z, Jackson BA, Miliordos E. Ab Initio Calculations on the Ground and Excited Electronic States of Thorium-Ammonia, Thorium-Aza-Crown, and Thorium-Crown Ether Complexes. Molecules 2023; 28:4712. [PMID: 37375268 DOI: 10.3390/molecules28124712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Positively charged metal-ammonia complexes are known to host peripheral, diffuse electrons around their molecular skeleton. The resulting neutral species form materials known as expanded or liquid metals. Alkali, alkaline earth, and transition metals have been investigated previously in experimental and theoretical studies of both the gas and condensed phase. This work is the first ab initio exploration of an f-block metal-ammonia complex. The ground and excited states are calculated for Th0-3+ complexes with ammonia, crown ethers, and aza-crown ethers. For Th3+ complexes, the one valence electron Th populates the metal's 6d or 7f orbitals. For Th0-2+, the additional electrons prefer occupation of the outer s- and p-type orbitals of the complex, except Th(NH3)10, which uniquely places all four electrons in outer orbitals of the complex. Although thorium coordinates up to ten ammonia ligands, octa-coordinated complexes are more stable. Crown ether complexes have a similar electronic spectrum to ammonia complexes, but excitations of electrons in the outer orbitals of the complex are higher in energy. Aza-crown ethers disfavor the orbitals perpendicular to the crowns, attributed to the N-H bonds pointing along the plane of the crowns.
Collapse
Affiliation(s)
- Zhongyuan Lu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| |
Collapse
|
7
|
Claveau EE, Sader S, Jackson BA, Khan SN, Miliordos E. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire? Phys Chem Chem Phys 2023; 25:5313-5326. [PMID: 36723253 DOI: 10.1039/d2cp05480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transition metal oxides have been extensively used in the literature for the conversion of methane to methanol. Despite the progress made over the past decades, no method with satisfactory performance or economic viability has been detected. The main bottleneck is that the produced methanol oxidizes further due to its weaker C-H bond than that of methane. Every improvement in the efficiency of a catalyst to activate methane leads to reduction of the selectivity towards methanol. Is it therefore prudent to keep studying (both theoretically and experimentally) metal oxides as catalysts for the quantitative conversion of methane to methanol? This perspective focuses on molecular metal oxide complexes and suggests strategies to bypass the current bottlenecks with higher weight on the computational chemistry side. We first discuss the electronic structure of metal oxides, followed by assessing the role of the ligands in the reactivity of the catalysts. For better selectivity, we propose that metal oxide anionic complexes should be explored further, while hydrophylic cavities in the vicinity of the metal oxide can perturb the transition-state structure for methanol increasing appreciably the activation barrier for methanol. We also emphasize that computational studies should target the activation reaction of methanol (and not only methane), the study of complete catalytic cycles (including the recombination and oxidation steps), and the use of molecular oxygen as an oxidant. The titled chemical conversion is an excellent challenge for theory and we believe that computational studies should lead the field in the future. It is finally shown that bottom-up approaches offer a systematic way for exploration of the chemical space and should still be applied in parallel with the recently popular machine learning techniques. To answer the question of the title, we believe that metal oxides should still be considered provided that we change our focus and perform more systematic investigations on the activation of methanol.
Collapse
Affiliation(s)
- Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
8
|
Opoku E, Pawłowski F, Ortiz JV. Electron Propagator Theory of Vertical Electron Detachment Energies of Anions: Benchmarks and Applications to Nucleotides. J Phys Chem A 2023; 127:1085-1101. [PMID: 36656801 DOI: 10.1021/acs.jpca.2c08372] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new generation of ab initio electron-propagator self-energy approximations that are free of adjustable parameters is tested on a benchmark set of 55 vertical electron detachment energies of closed-shell anions. Comparisons with older self-energy approximations indicate that several new methods that make the diagonal self-energy approximation in the canonical Hartree-Fock orbital basis provide superior accuracy and computational efficiency. These methods and their acronyms, mean absolute errors (in eV), and arithmetic bottlenecks expressed in terms of occupied (O) and virtual (V) orbitals are the opposite-spin, non-Dyson, diagonal second-order method (os-nD-D2, 0.2, OV2), the approximately renormalized quasiparticle third-order method (Q3+, 0.15, O2V3) and the approximately renormalized, non-Dyson, linear, third-order method (nD-L3+, 0.1, OV4). The Brueckner doubles with triple field operators (BD-T1) nondiagonal electron-propagator method provides such close agreement with coupled-cluster single, double, and perturbative triple replacement total energy differences that it may be used as an alternative means of obtaining standard data. The new methods with diagonal self-energy matrices are the foundation of a composite procedure for estimating basis-set effects. This model produces accurate predictions and clear interpretations based on Dyson orbitals for the photoelectron spectra of the nucleotides found in DNA.
Collapse
Affiliation(s)
- Ernest Opoku
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Filip Pawłowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - J V Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
9
|
Jackson BA, Miliordos E. The nature of supermolecular bonds: Investigating hydrocarbon linked beryllium solvated electron precursors. J Chem Phys 2022; 156:194302. [PMID: 35597656 DOI: 10.1063/5.0089815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Beryllium ammonia complexes Be(NH3)4 are known to bear two diffuse electrons in the periphery of a Be(NH3)4 2+ skeleton. The replacement of one ammonia with a methyl group forms CH3Be(NH3)3 with one peripheral electron, which is shown to maintain the hydrogenic-type shell model observed for Li(NH3)4. Two CH3Be(NH3)3 monomers are together linked by aliphatic chains to form strongly bound beryllium ammonia complexes, (NH3)3Be(CH2)nBe(NH3)3, n = 1-6, with one electron around each beryllium ammonia center. In the case of a linear carbon chain, this system can be seen as the analog of two hydrogen atoms approaching each other at specific distances (determined by n). We show that the two electrons occupy diffuse s-type orbitals and can couple exactly as in H2 in either a triplet or singlet state. For long hydrocarbon chains, the singlet is an open-shell singlet nearly degenerate with the triplet spin state, which transforms to a closed-shell singlet for n = 1 imitating the σ-covalent bond of H2. The biradical character of the system is analyzed, and the singlet-triplet splitting is estimated as a function of n based on multi-reference calculations. Finally, we consider the case of bent hydrocarbon chains, which allows the closer proximity of the two diffuse electrons for larger chains and the formation of a direct covalent bond between the two diffuse electrons, which happens for two Li(NH3)4 complexes converting the open-shell to closed-shell singlets. The energy cost for bending the hydrocarbon chain is nearly compensated by the formation of the weak covalent bond rendering bent and linear structures nearly isoenergetic.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| |
Collapse
|
10
|
Ariyarathna IR, Miliordos E. Ground and excited states analysis of alkali metal ethylenediamine and crown ether complexes. Phys Chem Chem Phys 2021; 23:20298-20306. [PMID: 34486608 DOI: 10.1039/d1cp02552j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-level electronic structure calculations are carried out to obtain optimized geometries and excitation energies of neutral lithium, sodium, and potassium complexes with two ethylenediamine and one or two crown ether molecules. Three different sizes of crowns are employed (12-crown-4, 15-crown-5, 18-crown-6). The ground state of all complexes contains an electron in an s-type orbital. For the mono-crown ether complexes, this orbital is the polarized valence s-orbital of the metal, but for the other systems this orbital is a peripheral diffuse orbital. The nature of the low-lying electronic states is found to be different for each of these species. Specifically, the metal ethylenediamine complexes follow the previously discovered shell model of metal ammonia complexes (1s, 1p, 1d, 2s, 1f), but both mono- and sandwich di-crown ether complexes bear a different shell model partially due to their lower (cylindrical) symmetry and the stabilization of the 2s-type orbital. Li(15-crown-5) is the only complex with the metal in the middle of the crown ether and adopts closely the shell model of metal ammonia complexes. Our findings suggest that the electronic band structure of electrides (metal crown ether sandwich aggregates) and expanded metals (metal ammonia aggregates) should be different despite the similar nature of these systems (bearing diffuse electrons around a metal complex).
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
11
|
Jackson BA, Miliordos E. Electronic and geometric structure of cationic and neutral chromium and molybdenum ammonia complexes. J Chem Phys 2021; 155:014303. [PMID: 34241410 DOI: 10.1063/5.0054648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High level quantum chemical approaches are used to study the geometric and electronic structures of M(NH3)n and M(NH3)n + (M = Cr, Mo for n = 1-6). These complexes possess a dual shell electronic structure of the inner metal (3d or 4d) orbitals and the outer diffuse orbitals surrounding the periphery of the complex. Electronic excitations reveal these two shells to be virtually independent of the other. Molybdenum and chromium ammonia complexes are found to differ significantly in geometry with the former adopting an octahedral geometry and the latter a Jahn-Teller distorted octahedral structure where only the axial distortion is stable. The hexa-coordinated complexes and the tetra-coordinated complexes with two ammonia molecules in the second solvation shell are found to be energetically competitive. Electronic excitation energies and computed IR spectra are provided to allow the two isomers to be experimentally distinguished. This work is a component of an ongoing effort to study the periodic trends of transition metal solvated electron precursors.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| |
Collapse
|
12
|
Khan SN, Miliordos E. Scandium in Neutral and Positively Charged Ammonia Complexes: Balancing between Sc2+ and Sc3+. J Phys Chem A 2020; 124:4400-4412. [DOI: 10.1021/acs.jpca.0c00693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shahriar N. Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
13
|
Ariyarathna IR, Miliordos E. Geometric and electronic structure analysis of calcium water complexes with one and two solvation shells. Phys Chem Chem Phys 2020; 22:22426-22435. [DOI: 10.1039/d0cp04309e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability of calcium water complexes is investigated quantum mechanically. Ground and excited electronic states are studied for hexa-, octa-, and octakaideca-coordinated complexes, where calcium valence electrons move to outer diffuse orbitals.
Collapse
|
14
|
Ariyarathna IR, Pawłowski F, Ortiz JV, Miliordos E. Aufbau Principle for Diffuse Electrons of Double-Shell Metal Ammonia Complexes: The Case of M(NH3)4@12NH3, M = Li, Be+, B2+. J Phys Chem A 2019; 124:505-512. [DOI: 10.1021/acs.jpca.9b07734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isuru R. Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Filip Pawłowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Joseph Vincent Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
15
|
Ariyarathna IR, Almeida NMS, Miliordos E. Stability and Electronic Features of Calcium Hexa-, Hepta-, and Octa-Coordinated Ammonia Complexes: A First-Principles Study. J Phys Chem A 2019; 123:6744-6750. [DOI: 10.1021/acs.jpca.9b04966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isuru R. Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Nuno M. S. Almeida
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
16
|
Kozubal J, Heck TR, Metz RB. Vibrational Spectroscopy of Cr+(NH3)n (n = 1–6) Reveals Coordination and Hydrogen-Bonding Motifs. J Phys Chem A 2019; 123:4929-4936. [DOI: 10.1021/acs.jpca.9b03196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justine Kozubal
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Tristan R. Heck
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ricardo B. Metz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Ariyarathna IR, Miliordos E. Superatomic nature of alkaline earth metal–water complexes: the cases of Be(H2O)0,+4 and Mg(H2O)0,+6. Phys Chem Chem Phys 2019; 21:15861-15870. [DOI: 10.1039/c9cp01897b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beryllium– and magnesium–water complexes are shown to accommodate peripheral electrons around their Be2+(H2O)4 and Mg2+(H2O)6 cores in hydrogenic type orbitals.
Collapse
|