1
|
Gromnitskaya EL, Danilov IV, Brazhkin VV. Polyhydric alcohols under high pressure: comparative ultrasonic study of elastic properties. Phys Chem Chem Phys 2024. [PMID: 39585248 DOI: 10.1039/d4cp03667k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We carried out an experimental ultrasonic study of polyhydric alcohols with the general chemical formula CnHn+2(OH)n with an increasing number of OH groups: glycerol (n = 3), erythritol (n = 4), xylitol (n = 5), sorbitol (n = 6). The baric and temperature dependences of the elastic characteristics of these substances in the crystalline and glassy states were studied both under isothermal compression up to 1 GPa and during the isobaric heating of 77-295 K. For glycerol, glasses were obtained at different cooling rates, glass-liquid transitions were studied at different pressures. All the studied glasses have lower elastic moduli than the same substances in the crystalline state at the same pressure-temperature conditions. We obtained a cascade of glass-supercooled liquid-crystal transitions during heating of glassy erythritol. In the series of substances with n = 3, 4, 5 the bulk moduli show a tendency to decrease with increasing n. However, sorbitol (n = 6) unexpectedly has the highest elastic moduli among the studied substances in both the glassy and crystalline states. The studied glassformers show a general tendency to increase the glass transition temperature Tg and the fragility coefficient m with increasing n.
Collapse
Affiliation(s)
- Elena L Gromnitskaya
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, 108840 Moscow, Russia.
| | - Igor V Danilov
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, 108840 Moscow, Russia.
| | - Vadim V Brazhkin
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, 108840 Moscow, Russia.
| |
Collapse
|
2
|
Danilov I, Gromnitskaya E, Brazhkin V. Thermobaric history as a tool to govern properties of glasses: case of dipropylene glycol. Phys Chem Chem Phys 2023; 25:26813-26819. [PMID: 37782054 DOI: 10.1039/d3cp03306f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The elastic properties of high- and low-pressure glasses of dipropylene glycol were determined for the first time under conditions of isothermal compression up to 1 GPa at 77 K and isobaric heating of 77-300 K at 0.05 GPa and 1 GPa. A strong dependence of the elastic properties of glasses on their thermobaric history has been revealed: glasses obtained at high pressure have not only higher densities (3.9%), but also noticeably higher elastic moduli. This effect is especially pronounced in the shear modulus: high-pressure glass has a 30% higher shear modulus than low-pressure glass. The behavior of elastic moduli during the glass-to-liquid transition also depends on the thermobaric history. Glass produced at low pressure but heated at high pressure has anomalous temperature dependences of the elastic moduli. Heating dipropylene glycol glasses at different pressures allowed us to refine the Tg(P) dependence.
Collapse
Affiliation(s)
- Igor Danilov
- Institute for High Pressure Physics, Russian Academy of Sciences, 14, Kaluzhskoe shosse, 108840, Troitsk, Moscow, Russia.
| | - Elena Gromnitskaya
- Institute for High Pressure Physics, Russian Academy of Sciences, 14, Kaluzhskoe shosse, 108840, Troitsk, Moscow, Russia.
| | - Vadim Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences, 14, Kaluzhskoe shosse, 108840, Troitsk, Moscow, Russia.
| |
Collapse
|
3
|
Danilov IV, Gromnitskaya EL, Brazhkin VV. Phase transitions in 1-bromoadamantane compared to 1-chloroadamantane: similarities and unique features. Phys Chem Chem Phys 2021; 23:23274-23279. [PMID: 34632470 DOI: 10.1039/d1cp03080a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The elastic properties of 1-chloroadamantane and 1-Bromoadamantane in order-disorder and order-quasi-order phase transitions at temperatures in the range of 77-305 K and high pressures up to 1.1 GPa are studied by the ultrasonic method. The elastic moduli of halogenated adamantanes clearly indicate these transitions, demonstrating high capabilities of the ultrasonic method. Our ultrasonic studies have detected for the first time the λ-anomaly of the elastic properties and, thereby, have confirmed that the phase transition from the orientationally ordered to quasi-ordered phase (M → O) in 1-bromoadamantane is a weak first-order phase transition having some properties of a second-order phase transition. The pressure derivatives of the elastic moduli of 1-chloroadamantane and 1-bromoadamantane in the orientationally ordered phase at 77 K are dB/dP ≈ 8, which allows using the Lennard-Jones potential to theoretically describe this phase.
Collapse
Affiliation(s)
- Igor V Danilov
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia.
| | - Elena L Gromnitskaya
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia.
| | - Vadim V Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia.
| |
Collapse
|
4
|
Gromnitskaya EL, Danilov IV, Brazhkin VV. Comparative study of the elastic properties of adamantane and 1-chloroadamantane at high pressure and different temperatures and at order-disorder transitions. Phys Chem Chem Phys 2021; 23:2349-2354. [PMID: 33449988 DOI: 10.1039/d0cp04550k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a comparative ultrasonic study of the elastic properties of adamantane and 1-chloroadamantane at high pressure (up to 1.4 GPa) and different temperatures (77-293 K) and at order-disorder transitions. The ultrasonic method provides complementary pictures of the order-disorder transitions in diamondoids under pressure. The equation of state of adamantane and 1-chloroadamantane was determined up to 1.4 GPa from ultrasonic measurements of bulk modulus and is in good accordance with the previous equations developed from volumetric data. We measured the bulk and shear moduli and Poisson's ratio of adamantane and 1-chloroadamantane up to 1.4 GPa. The behaviors of elastic moduli are different for adamantane and 1-chloroadamantane. This indicates that the substitution of one hydrogen atom for chlorine significantly reduces both elastic moduli, particularly the shear modulus (≈30%). Although the pressure dependences of the bulk modulus B are almost linear and its pressure derivatives for adamantane and 1-chloroadamantane are close to each other (B' ≈ 10-12), a jump is hardly observed on the pressure dependence B(P) for adamantane at the transition from the plastic to ordered phase, whereas the pressure dependence of the bulk modulus for 1-chloroadamantane exhibits a jump of almost 17%. The experimental dependences of the bulk modulus and relative changes in the volume for both materials clearly demonstrate that the compressibility of 1-chloroadamantane is much higher for both phases. The Poisson coefficient calculated from our experimental data is larger for 1-chloroadamantane, having lower both bulk and shear moduli.
Collapse
Affiliation(s)
- Elena L Gromnitskaya
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia.
| | | | | |
Collapse
|
5
|
Gabriel JP, Tress M, Kossack W, Popp L, Kremer F. Molecular heterogeneities in the thermal expansivity of polyalcohols. J Chem Phys 2021; 154:024503. [PMID: 33445918 DOI: 10.1063/5.0036067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Density is the key quantity for nearly all the numerous theories of the (dynamic) glass transition of supercooled liquids and melts. As mean field quantity, it is used to describe correlations and heterogeneities between regions consisting of several molecules. In contrast, the question how density is created by the interactions (i.e., bonds) within a molecule and to its nearest neighbors is almost unexplored. To investigate this for the example of a homologous series of polyalcohols (glycerol, threitol, xylitol, and sorbitol), Fourier-Transform InfraRed (FTIR) spectroscopy is carried out in a wide range of temperatures from far above to far below the calorimetric glass transition Tg. This enables us to determine the potentials and hence the bond lengths of specific intramolecular and intermolecular interactions. While the former has an expansion coefficient of (∼0.1 pm/100 K) with only smooth changes, the latter shows a 30-40 times stronger response with pronounced kinks at Tg. A comparison with the overall expansion based on mass density reveals that one has to separate between strong (OH⋅⋅⋅O) and weak (CH⋅⋅⋅O) intermolecular hydrogen (H)-bridges. Despite the fact that the latter dominates glassy dynamics, their expansivity is 5 times smaller than that of the weak H-bridges. It is to be expected that such heterogeneities on intramolecular and intermolecular scales are a general phenomenon in liquids and glassy systems demonstrating especially the necessity of atomistic simulations.
Collapse
Affiliation(s)
- Jan Philipp Gabriel
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| | - Martin Tress
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| | - Wilhelm Kossack
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| | - Ludwig Popp
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| | - Friedrich Kremer
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Guo Y, Jin X, Wang LM. Unusual Debye relaxation in 4-methyl-2-pentanol evidenced by high-pressure dielectric studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:025401. [PMID: 33052889 DOI: 10.1088/1361-648x/abb742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Debye relaxation is the main signal in the dielectric measurements of monoalcohols arising from the hydrogen-bonded superstructures, but its physics remains to be cleared. In this work, a monoalcohol of 4-methyl-2-pentanol is studied using dielectric spectroscopies recorded at high pressures. The dynamic parameters of the Debye and structural relaxations are extracted. The calculation of the Kirkwood factor of the Debye relaxation indicates chain-like H-bond molecular configurations. Remarkably, we found that both ratios of the relaxation strength and relaxation time between the Debye and structural dynamics, Δε D/Δε α and τ D/τ α , decreases upon compression, indicating a positive correlation. This is different from the results reported in primary 2-ethyl-1-hexanol and secondary 4-methyl-3-heptanol, where the two ratios are inversely correlated. The discussion and interpretation of these different results are provided.
Collapse
Affiliation(s)
- Yuxing Guo
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| | - Xiao Jin
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004 People's Republic of China
| |
Collapse
|