1
|
Chu Y, Jin X, Ji G, Li P, Xiao S, Wang W, Song Z. Rigid, α-Helical Polypeptide Nanoprobes with Thermally Activated Delayed Fluorescence for Time-Resolved, High-Contrast Bioimaging. ACS NANO 2025; 19:680-690. [PMID: 39743728 DOI: 10.1021/acsnano.4c11719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Thermally activated delayed fluorescence (TADF)-based nanoprobes are promising candidates as bioimaging agents, yet the fine-tuning of their photophysical properties through the modulation of the surrounding matrices remains largely unexplored. Herein, we report the development of polypeptide-TADF nanoprobes, where the rigid, α-helical polypeptide scaffold plays a critical role in enhancing the emission intensity and lifetime of the TADF fluorophore for bioimaging. The α-helical scaffolds not only spatially separated TADF molecules to avoid self-quenching but also anchored the dyes with minimized rotation and vibration. The nanoprobes thus exhibited >600 nm microsecond emission even in the presence of oxygen, facilitating cellular and animal imaging with a high signal-to-background ratio (SBR) by minimizing the interferences from autofluorescence signals. We believe that this work highlights the impact of the supporting polymeric conformation on the TADF performance, offering insights for the future design of time-resolved imaging probes.
Collapse
Affiliation(s)
- Yang Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiaoxiong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Pengfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shanshan Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wanying Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Chen T, Liu Y, Gao Z, Gao Y, Chen H, Ye H, Luo Q, Wang K, Wu D. Template-assisted Flexible-to-rigid Transition of Peptides in Head-to-tail Self-polymerization Enables Sequence-controllable and Post-modifiable Peptide Nanofibers. Angew Chem Int Ed Engl 2024:e202415809. [PMID: 39266463 DOI: 10.1002/anie.202415809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Peptide-based nanofibers are promising materials for many essential applications and can be generalized into two categories, self-assembling peptide nanofibers (SAPNs) and poly(amino acid) nanofibers (PAANs). Non-covalent SAPNs are sequence-controllable, but poorly stable and not suitable for post-modification. While covalent PAANs are post-modifiable, however, their sequences are either monotonic or undefined. The nanofibers obtained by head-to-tail covalent coupling polymerization of sequence-known peptides, which we call series-connected peptide nanofibers (SCPNs), promise to have the advantages of both SAPNs and PAANs, but they are barely reported. The undesired backbiting effect during the head-to-tail polymerization is one of the possible challenges. Here, we present a template-assisted strategy to trigger the flexible-to-rigid transition of peptide units, which can avoid the backbiting effect and enable consecutive intermolecular polymerization of peptides to produce desired sequence-controlled covalent SCPNs. SCPNs are highly stable and can function as excellent parent materials for various post-processing to create diverse hierarchical materials independent of the peptide sequence. Moreover, SCPNs allow for the display of predetermined functional groups at regular intervals along the nanofibers by pre-modification of the initial peptide sequence. SCPNs represent a new category of peptide-based nanofibers with outstanding performances and vast potential.
Collapse
Affiliation(s)
- Tianzi Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yin Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zhanshan Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yue Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Haijin Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Haonan Ye
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Qiuhao Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Hou M, Liu S. Recent Progress of pH-Responsive Peptides, Polypeptides, and Their Supramolecular Assemblies for Biomedical Applications. Biomacromolecules 2024; 25:5402-5416. [PMID: 39105715 DOI: 10.1021/acs.biomac.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Peptides and polypeptides feature a variety of active functional groups on their side chains (including carboxylic acid, hydroxyl, amino, and thiol groups), enabling diverse chemical modifications. This versatility makes them highly valuable in stimuli-responsive systems. Notably, pH-responsive peptides and polypeptides, due to their ability to respond to pH changes, hold significant promise for applications in cellular pathology and tumor targeting. Extensive researches have highlighted the potentials of low pH insertion peptides (pHLIPs), peptide-drug conjugates (PDCs), and antibody-drug conjugates (ADCs) in biomedicine. Peptide self-assemblies, with their structural stability, ease of regulation, excellent biocompatibility, and biodegradability, offer immense potentials in the development of novel materials and biomedical applications. We also explore specific examples of their applications in drug delivery, tumor targeting, and tissue engineering, while discussing future challenges and potential advancements in the field of pH-responsive self-assembling peptide-based biomaterials.
Collapse
Affiliation(s)
- Mingxuan Hou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jin-zhai Road, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jin-zhai Road, Hefei, Anhui Province 230026, China
| |
Collapse
|
5
|
Jiang C, Zhao C, Xu P, Song Q, Tao X, Lin S. Effects of Secondary Structures and pH on the Self-Assembly of Poly(ethylene glycol)- b-polytyrosine. Biomacromolecules 2024; 25:5028-5038. [PMID: 38950188 DOI: 10.1021/acs.biomac.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Different from conventional synthetic polymers, polypeptides exhibit a distinguishing characteristic of adopting specific secondary structures, including random coils, α-helixes, and β-sheets. The conformation determines the rigidity and solubility of polypeptide chains, which further direct the self-assembly and morphology of the nanostructures. We studied the effect of distinct secondary structures on the self-assembly behavior of polytyrosine (PTyr)-derived amphiphilic copolymers. Two block copolymers of enantiopure poly(ethylene glycol)-b-poly(l-tyrosine) (PEG-b-P(l-Tyr)) and racemic poly(ethylene glycol)-b-poly(dl-tyrosine) (PEG-b-P(dl-Tyr)) were synthesized through the ring-opening polymerization of l-tyrosine N-thiocarboxyanhydride (l-Tyr-NTA) and dl-tyrosine N-thiocarboxyanhydride (dl-Tyr-NTA), respectively, by using poly(ethylene glycol) amine as the initiator. PEG44-b-P(l-Tyr)10 adopts a β-sheet conformation and self-assembles into rectangular nanosheets in aqueous solutions, while PEG44-b-P(dl-Tyr)9 is primarily in a random coil conformation with a tiny content of β-sheet structures, which self-assembles into sheaf-like nanofibrils. A pH increase results in the ionization of phenolic hydroxyl groups, which decreases the β-sheet content and increases the random coil content of the PTyr segments. Accordingly, PEG44-b-P(l-Tyr)10 and PEG44-b-P(dl-Tyr)9 self-assemble to form slender nanobelts and twisted nanoribbons, respectively, in alkaline aqueous solutions. The secondary structure-driven self-assembly of PTyr-derived copolymers is promising to construct filamentous nanostructures, which have potential for applications in controlled drug release.
Collapse
Affiliation(s)
- Caixia Jiang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chonghao Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qipeng Song
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinfeng Tao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Ge C, He J, Gan M, Qian Y, Zhu J, Wu F, Song Z, Yin L. Conformation-Switchable Polypeptides as Molecular Gates for Controllable Drug Release. Biomacromolecules 2024; 25:3373-3383. [PMID: 38713187 DOI: 10.1021/acs.biomac.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The control over secondary structure has been widely studied to regulate the properties of polypeptide materials, which is used to change their functions in situ for various biomedical applications. Herein, we designed and constructed enzyme-responsive polypeptides as gating materials for mesoporous silica nanoparticles (MSNs), which underwent a distorted structure-to-helix transition to promote the release of encapsulated drugs. The polypeptide conjugated on the MSN surface adopted a negatively charged, distorted, flexible conformation, covering the pores of MSN to prevent drug leakage. Upon triggering by alkaline phosphatase (ALP) overproduced by tumor cells, the polypeptide transformed into positively charged, α-helical, rigid conformation with potent membrane-penetrating capabilities, which protruded from the MSN surface to uncover the pores. Such a transition thus enabled cancer-selective drug release and cellular internalization to efficiently kill tumor cells. This study highlights the important role of chain flexibility in modulating the biological function of polypeptides and provides a new application paradigm for synthetic polypeptides with secondary-structure transition.
Collapse
Affiliation(s)
- Chenglong Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jianyin He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Mudan Gan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yu Qian
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Junliang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Fan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Lee D, Huntoon K, Wang Y, Kang M, Lu Y, Jeong SD, Link TM, Gallup TD, Qie Y, Li X, Dong S, Schrank BR, Grippin AJ, Antony A, Ha J, Chang M, An Y, Wang L, Jiang D, Li J, Koong AC, Tainer JA, Jiang W, Kim BYS. Synthetic cationic helical polypeptides for the stimulation of antitumour innate immune pathways in antigen-presenting cells. Nat Biomed Eng 2024; 8:593-610. [PMID: 38641710 PMCID: PMC11162332 DOI: 10.1038/s41551-024-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/01/2024] [Indexed: 04/21/2024]
Abstract
Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.
Collapse
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifei Lu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seong Dong Jeong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Todd M Link
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas D Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaqing Qie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengyu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi An
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Liang Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Chen Y, Song Y, Zhu X, Dong CM, Chen M. Design and Update of Multifunctional Polypeptides and Their Applications for the Prevention of Viral Infections and Cancer Immunotherapies. POLYM REV 2024; 64:528-574. [DOI: 10.1080/15583724.2023.2281462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 11/04/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
9
|
Zhao W, Gao M, Kong L, Yu S, Zhao C, Chen C. Chirality-Regulated Clusteroluminescence in Polypeptides. Biomacromolecules 2024; 25:1897-1905. [PMID: 38330502 DOI: 10.1021/acs.biomac.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The low emission efficiency of clusteroluminogens restricts their practical applications in the fields of sensors and biological imaging. In this work, the clusteroluminescence of ordered/disordered polypeptides was observed, and the photoluminescence (PL) intensity of polypeptides can be modulated by the chirality of amino acid residues. Polyglutamates with different chiral compositions were synthesized, and the racemic polypeptides exhibited a significantly higher PL intensity than the enantiopure ones. This emission originates from the n-π* transition between C═O groups of polypeptides and is enhanced by clusterization of polypeptides. CD and Fourier transform infrared spectra demonstrated that the enantiopure and racemic polypeptides form α-helix and random coil structures, respectively. The disordered polypeptides can form more chain entanglements and interchain interactions because of their high flexibility, leading to more clusterizations and stronger PL intensity. The rigidity of ordered helical structures restrains the chain entanglements, and the formation of intrachain hydrogen bonds between amide groups of the backbone impairs the interchain interaction between polypeptides, resulting in lower PL intensity. The PL intensity of the polypeptides can also be manipulated by the addition of urea or trifluoroacetic acid. Our study not only elucidates the chirality/order-based structure-property relationship of clusteroluminescence in peptide-based polymers but also offers implications for the rational design of fluorescent peptides/proteins.
Collapse
Affiliation(s)
- Wangtao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mei Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Liufen Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shunfeng Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
10
|
Sun J, Chen J, Sun Y, Hou Y, Liu Z, Lu H. On the origin of the low immunogenicity and biosafety of a neutral α-helical polypeptide as an alternative to polyethylene glycol. Bioact Mater 2024; 32:333-343. [PMID: 37927900 PMCID: PMC10622589 DOI: 10.1016/j.bioactmat.2023.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Poly(ethylene glycol) (PEG) is a prominent synthetic polymer widely used in biomedicine. Despite its notable success, recent clinical evidence highlights concerns regarding the immunogenicity and adverse effects associated with PEG in PEGylated proteins and lipid nanoparticles. Previous studies have found a neutral helical polypeptide poly(γ-(2-(2-(2-methoxyethoxy)ethoxy)ethyl l-glutamate), namely L-P(EG3Glu), as a potential alternative to PEG, displaying lower immunogenicity. To comprehensively assess the immunogenicity, distribution, degradation, and biosafety of L-P(EG3Glu), herein, we employ assays including enzyme-linked immunosorbent assay, positron emission tomography-computed tomography, and fluorescent resonance energy transfer. Our investigations involve in vivo immune responses, biodistribution, and macrophage activation of interferon (IFN) conjugates tethered with helical L-P(EG3Glu) (L20k-IFN), random-coiled DL-P(EG3Glu) (DL20k-IFN), and PEG (PEG20k-IFN). Key findings encompass: minimal anti-IFN and anti-polymer antibodies elicited by L20k-IFN; length-dependent affinity of PEG to anti-PEG antibodies; accelerated clearance of DL20k-IFN and PEG20k-IFN linked to anti-IFN and anti-polymer IgG; complement activation for DL20k-IFN and PEG20k-IFN but not L20k-IFN; differential clearance with L20k-IFN kidney-based, and DL20k-IFN/PEG20k-IFN accumulation mainly in liver/spleen; enhanced macrophage activation by DL20k-IFN and PEG20k-IFN; L-P(EG3Glu) resistance to proteolysis; and safer repeated administrations of L-P(EG3Glu) in rats. Overall, this study offers comprehensive insights into the lower immunogenicity of L-P(EG3Glu) compared to DL-P(EG3Glu) and PEG, supporting its potential clinical use in protein conjugation and nanomedicines.
Collapse
Affiliation(s)
- Jialing Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yiming Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking University–Tsinghua University Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Xu X, Ma J, Wang A, Zheng N. N-Sulfonyl amidine polypeptides: new polymeric biomaterials with conformation transition responsive to tumor acidity. Chem Sci 2024; 15:1769-1781. [PMID: 38303932 PMCID: PMC10829015 DOI: 10.1039/d3sc05504c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Manipulation of pH responsiveness is a frequently employed tactic in the formulation of trigger-responsive nanomaterials. It offers an avenue for "smart" designs capitalizing on distinctive pH gradients across diverse tissues and intracellular compartments. However, an overwhelming majority of documented functional groups (>80%) exhibit responsiveness solely to the heightened acidic milieu of intracellular pH (about 4.5-5.5). This scenario diverges markedly from the moderately acidic extracellular pH (∼6.8) characteristic of tumor microenvironments. Consequently, systems predicated upon intracellular pH responsiveness are unlikely to confer discernible advantages concerning targeted penetration and cellular uptake at tumor sites. In this study, we elucidated the extracellular pH responsiveness intrinsic to N-sulfonyl amidine (SAi), delineating a method to synthesize an array of SAi-bearing polypeptides (SAi-polypeptides). Notably, we demonstrated the pH-dependent modulation of SAi-polypeptide conformations, made possible by the protonation/deprotonation equilibrium of SAi in response to minute fluctuations in pH from physiological conditions to the extracellular milieu of tumors. This dynamic pH-triggered transition of SAi-polypeptides from negatively charged to neutrally charged side chains at the pH outside tumor cells (∼6.8) facilitated a transition from coil to helix conformations, concomitant with the induction of cellular internalization upon arrival at tumor sites. Furthermore, the progressive acidification of the intracellular environment expedited drug release, culminating in significantly enhanced site-specific chemotherapeutic efficacy compared with free-drug counterparts. The distinct pH-responsive attributes of SAi could aid the design of tumor acidity-responsive applications, thereby furnishing invaluable insights into the realm of smart material design.
Collapse
Affiliation(s)
- Xiang Xu
- School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Jinjuan Ma
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University Dalian 116000 China
| | - Aiguo Wang
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University Dalian 116000 China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Dalian University of Technology Corporation of Changshu Research Institution Suzhou 215500 China
| |
Collapse
|
12
|
Zhang Y, Luo Y, Gao S, Zou L, Guan Y, Zhang Y. Liquid crystalline composite hydrogels with large pH-triggered anisotropic swelling for embolotherapy. Acta Biomater 2024; 174:206-216. [PMID: 38101558 DOI: 10.1016/j.actbio.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Inspired by the anisotropic structure of biological tissues, anisotropic hydrogels have been developed using various nanofillers, however, it remains a big challenge to synthesize hydrogels with large swelling anisotropy. Herein a single molecule filler, α-helical polypeptide, instead of nanoscale fillers, was used to synthesize anisotropic hydrogels. First nematic liquid crystal of poly(γ-benzyl l-glutamate) (PBLG) was prepared by shearing and stabilized by embedding in a crosslinked polymer matrix. The resulting PBLG composite gels were then converted to poly(L-glutamic acid) (PLGA) composite gels by debenzylation. The rigid rod-like structure of α-helical PBLG chains makes them easy to be orientated. The pH-sensitivity of PLGA makes the resulting composite gels pH-sensitive without the need to couple with a stimuli-responsive hydrogel matrix. In response to pH change PLGA composite gels swell anisotropically with a much larger swelling degree in the radial direction than in the axial direction. The swelling anisotropy (3.43) is much higher than most anisotropic hydrogels, particularly the stimuli-responsive ones reported previously. The composite gel also exhibits anisotropic mechanical properties with a larger Young's modulus in the axial direction than that in the radial direction. Preliminary test demonstrated that the composite gels have potential in embolotherapy thanks to its large pH-triggered anisotropic swelling. STATEMENT OF SIGNIFICANCE: Anisotropic hydrogels have important biomedical applications. Introduction of oriented nanofillers has been demonstrated a popular and versatile method for their synthesis, however, it remains a big challenge to achieve large swelling anisotropy. Herein a single molecule filler, α-helical polypeptide, instead of nanoscale fillers, was used to synthesize anisotropic hydrogels. This filler can be easily oriented by shearing. More importantly, as single molecule filler, it can constrain the swelling of hydrogel matrix more effectively. Using this filler, a pH-sensitive hydrogel with large swelling anisotropy (3.43) was successfully synthesized. Thanks to its large pH-triggered anisotropic swelling the hydrogel was successfully used as embolic agent to occlude vessels.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Luo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Sijia Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Zou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Guan
- Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| |
Collapse
|
13
|
Ren L, Lu X, Li W, Yan J, Whittaker AK, Zhang A. Thermoresponsive Helical Dendronized Poly(phenylacetylene)s: Remarkable Stabilization of Their Helicity via Photo-Dimerization of the Dendritic Pendants. J Am Chem Soc 2023. [PMID: 37922243 DOI: 10.1021/jacs.3c09333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Dynamic helical polymers can change their helicity according to external stimuli due to the low helix-inversion barriers, while helicity stabilization for polymers is important for applications in chiral recognition or chiral separations. Here, we present a convenient methodology to stabilize dynamic helical conformations of polymers through intramolecular cross-linking. Thermoresponsive dendronized poly(phenylacetylene)s (PPAs) carrying 3-fold dendritic oligoethylene glycol pendants containing cinnamate moieties were synthesized. These polymers exhibit typical features of dynamic helical structures in different solvents, that is, racemic contracted conformations in less polar organic solvents and predominantly one-handed stretched helical conformations in highly polar solvents. This dynamic helicity can be enhanced through selective solvation by increasing the polarity of the organic solvents or simply via their thermally mediated dehydration in water. However, through photocycloaddition of the cinnamate moieties between the neighboring pendants via UV irradiation, these dendronized PPAs adopt stable helical conformations either below or above their phase transition temperatures in water, and their helical conformations can even be retained in less polar organic solvents. Spectroscopic and atomic force microscopy measurements demonstrate that photocycloaddition between the cinnamate moieties occurs on the individual molecular level, and this is found to be helpful in restraining the photodegradation of the PPA backbones. Molecular dynamics simulations reveal that the spatial orientation of the pendants along the rigid polyene backbone is crucial for the photodimerization of cinnamates within one helix pitch.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| |
Collapse
|
14
|
Eng YJ, Nguyen TM, Luo HK, Chan JMW. Antifouling polymers for nanomedicine and surfaces: recent advances. NANOSCALE 2023; 15:15472-15512. [PMID: 37740391 DOI: 10.1039/d3nr03164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antifouling polymers are materials that can resist nonspecific interactions with cells, proteins, and other biomolecules. Typically, they are hydrophilic polymers with polar or charged moieties that are capable of strong nonbonding interactions with water molecules. This propensity to bind water generates a surface hydration layer that reduces nonspecific interactions with other molecules and is paramount to the antifouling behavior. This property is especially useful for nanoscale applications such as nanomedicine and surface modifications at the molecular level. In nanomedicine, antifouling polymers such as poly(ethylene glycol) and its alternatives play a key role in shielding drug molecules and therapeutic proteins/genes from the immune system within nanoassemblies, thereby enabling effective delivery to target tissues. For coatings, antifouling polymers help to prevent adhesion of cells and molecules to surfaces and are thus valued in marine and biomedical device applications. In this Review, we survey recent advances in antifouling polymers in the context of nanomedicine and coatings, while shining the spotlight on the major polymer classes such as PEG, polyzwitterions, poly(oxazoline)s, and other nonionic hydrophilic polymers.
Collapse
Affiliation(s)
- Yi Jie Eng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Julian M W Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
15
|
Liu Y, Ren Z, Zhang N, Yang X, Wu Q, Cheng Z, Xing H, Bai Y. A nanoscale MOF-based heterogeneous catalytic system for the polymerization of N-carboxyanhydrides enables direct routes toward both polypeptides and related hybrid materials. Nat Commun 2023; 14:5598. [PMID: 37699870 PMCID: PMC10497576 DOI: 10.1038/s41467-023-41252-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Synthetic polypeptides have emerged as versatile tools in both materials science and biomedical engineering due to their tunable properties and biodegradability. While the advancements of N-carboxyanhydride (NCA) ring-opening polymerization (ROP) techniques have aimed to expedite polymerization and reduce environment sensitivity, the broader implications of such methods remain underexplored, and the integration of ROP products with other materials remains a challenge. Here, we show an approach inspired by the success of many heterogeneous catalysts, using nanoscale metal-organic frameworks (MOFs) as co-catalysts for NCA-ROP accelerated also by peptide helices in proximity. This heterogeneous approach offers multiple advantages, including fast kinetics, low environment sensitivity, catalyst recyclability, and seamless integration with hybrid materials preparation. The catalytic system not only streamlines the preparation of polypeptides and polypeptide-coated MOF complexes (MOF@polypeptide hybrids) but also preserves and enhances their homogeneity, processibility, and overall functionalities inherited from the constituting MOFs and polypeptides.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Chemo-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, 2 South Lushan Road, 410082, Changsha, Hunan, China
| | - Zhongwu Ren
- State Key Laboratory of Chemo-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, 2 South Lushan Road, 410082, Changsha, Hunan, China
| | - Nannan Zhang
- State Key Laboratory of Chemo-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, 2 South Lushan Road, 410082, Changsha, Hunan, China
| | - Xiaoxin Yang
- State Key Laboratory of Chemo-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, 2 South Lushan Road, 410082, Changsha, Hunan, China
| | - Qihua Wu
- Jordan Valley Innovation Center, Missouri State University, 524 North Boonville Avenue, Springfield, MO, 65806, USA
| | - Zehong Cheng
- State Key Laboratory of Chemo-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, 2 South Lushan Road, 410082, Changsha, Hunan, China
| | - Hang Xing
- State Key Laboratory of Chemo-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, 2 South Lushan Road, 410082, Changsha, Hunan, China.
| | - Yugang Bai
- State Key Laboratory of Chemo-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, 2 South Lushan Road, 410082, Changsha, Hunan, China.
| |
Collapse
|
16
|
Li Z, Zheng Y, Yan J, Yan Y, Peng C, Wang Z, Liu H, Liu Y, Zhou Y, Ding M. Self-Assembly of Poly(Amino Acid)s Mediated by Secondary Conformations. Chembiochem 2023; 24:e202300132. [PMID: 37340829 DOI: 10.1002/cbic.202300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Self-assembly of block copolymers has recently drawn great attention due to its remarkable performance and wide variety of applications in biomedicine, biomaterials, microelectronics, photoelectric materials, catalysts, etc. Poly(amino acid)s (PAAs), formed by introducing synthetic amino acids into copolymer backbones, are able to fold into different secondary conformations when compared with traditional amphiphilic copolymers. Apart from changing the chemical composition and degree of polymerization of copolymers, the self-assembly behaviors of PAAs could be controlled by their secondary conformations, which are more flexible and adjustable for fine structure tailoring. In this article, we summarize the latest findings on the variables that influence secondary conformations, in particular the regulation of order-to-order conformational changes and the approaches used to manage the self-assembly behaviors of PAAs. These strategies include controlling pH, redox reactions, coordination, light, temperature, and so on. Hopefully, we can provide valuable perspectives that will be useful for the future development and use of synthetic PAAs.
Collapse
Affiliation(s)
- Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jingyue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
17
|
Xu X, Ma J, Zheng Y, Wang S, Wang A, Zheng N. Secondary Structure in Overcoming Photosensitizers' Aggregation: α-Helical Polypeptides for Enhanced Photodynamic Therapy. Adv Healthc Mater 2023; 12:e2203386. [PMID: 37016763 DOI: 10.1002/adhm.202203386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Indexed: 04/06/2023]
Abstract
Aggregation caused quenching (ACQ) effect can severely inhibit the application of hydrophobic photosensitizers (PSs) bearing planar and rigid structures. Most of the reported cases utilized random-coiled polymers for the in vivo delivery of PSs, which would inevitably aggravate ACQ effect due to the flexible chains. In this work, the role of polymers' secondary structures (especially α-helical conformation) in overcoming the PSs' aggregation is systemically investigated based on the design of α-helical polypeptides bearing tetraphenylporphyrin (TPP) side chains. Atomistic molecular dynamics simulation, fluorescence quantum yield, and reactive oxygen species (ROS) generation yield are evaluated to demonstrate that α-helical polypeptide backbones can significantly boost both fluorescence quantum yield and ROS by suppressing the π-π stacking interaction between TPP units. The enhanced in vitro and in vivo phototoxicity for helical polypeptides also reveal functions of secondary structures in inhibiting ACQ and improving the membrane activity. Successful in vivo photodynamic therapy (PDT) results in mice bearing H22 tumors showed great potentials for further clinical applications.
Collapse
Affiliation(s)
- Xiang Xu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinjuan Ma
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University Dalian, Dalian, 116000, China
| | - Yubin Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| | - Shaolei Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital&Institute, Department of Radiology Intervention, Shenyang, China
| | - Aiguo Wang
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University Dalian, Dalian, 116000, China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| |
Collapse
|
18
|
Zheng Y, Liu Y, Wu Z, Peng C, Wang Z, Yan J, Yan Y, Li Z, Liu C, Xue J, Tan H, Fu Q, Ding M. Photoallosteric Polymersomes toward On-Demand Drug Delivery and Multimodal Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210986. [PMID: 36852633 DOI: 10.1002/adma.202210986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Indexed: 06/16/2023]
Abstract
Allosteric transitions can modulate the self-assembly and biological function of proteins. It remains, however, tremendously challenging to design synthetic allosteric polymeric assemblies with spatiotemporally switchable hierarchical structures and functionalities. Here, a photoallosteric polymersome is constructed that undergoes a rapid conformational transition from β-sheet to α-helix upon exposure to near-infrared light irradiation. In addition to improving nanoparticle cell penetration and lysosome escape, photoinduced allosteric behavior reconstructs the vesicular membrane structure, which stimulates the release of hydrophilic cytolytic peptide melittin and hydrophobic kinase inhibitor sorafenib. Combining on-demand delivery of multiple therapeutics with phototherapy results in apoptosis and immunogenic death of tumor cells, remold the immune microenvironment and achieve an excellent synergistic anticancer efficacy in vivo without tumor recurrence and metastasis. Such a light-modulated allosteric transition in non-photosensitive polymers provides new insight into the development of smart nanomaterials for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongchao Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jingyue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Congcong Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
19
|
Ge C, Zhu J, Ye H, Wei Y, Lei Y, Zhou R, Song Z, Yin L. Rational Construction of Protein-Mimetic Nano-Switch Systems Based on Secondary Structure Transitions of Synthetic Polypeptides. J Am Chem Soc 2023; 145:11206-11214. [PMID: 37167602 DOI: 10.1021/jacs.3c01156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The manipulation of the flexibility/rigidity of polymeric chains to control their function is commonly observed in natural macromolecules but largely unexplored in synthetic systems. Herein, we construct a series of protein-mimetic nano-switches consisting of a gold nanoparticle (GNP) core, a synthetic polypeptide linker, and an optically functional molecule (OFM), whose biological function can be dynamically regulated by the flexibility of the polypeptide linker. At the dormant state, the polypeptide adopts a flexible, random-coiled conformation, bringing GNP and OFM in close proximity that leads to the "turn-off" of the OFM. Once treated with alkaline phosphatase (ALP), the nano-switches are activated due to the increased separation distance between GNP and OFM driven by the coil-to-helix and flexible-to-rigid transition of the polypeptide linker. The nano-switches therefore enable selective fluorescence imaging or photodynamic therapy in response to ALP overproduced by tumor cells. The control over polymer flexibility represents an effective strategy to manipulate the optical activity of nano-switches, which mimics the delicate structure-property relationship of natural proteins.
Collapse
Affiliation(s)
- Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Junliang Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Huan Ye
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yuansong Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yuheng Lei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Renxiang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Protease-catalyzed synthesis of α-poly-L-Lysine and amphiphilic poly(L-lysine-co-L-phenylalanine) in a neat non-toxic organic solvent. Bioprocess Biosyst Eng 2023; 46:515-522. [PMID: 36539643 DOI: 10.1007/s00449-022-02836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Subtilisin Carlsberg (alkaline protease from Bacillus licheniformis) catalyzes the syntheses of high molecular weights (ca. 20 KDa) cationic α-poly-L-lysine and amphiphilic poly(α-L-lysine-co-L-phenylalanine) in neat organic solvent. The synthesis is conducted in liquid 1,1,1,2-tetrafluoroethane solvent, which is a hydrophobic non-toxic gas that does not deplete the ozone layer and approved for pharmaceutical applications. Solubility of substrates and adequate protease activity in this system with low water environment limits the reaction of hydrolysis of the growing peptide chains. The pressurization of this organic compressed fluid to liquid has low-pressure requirements (25 bar, 40 ºC), and its complete evaporation at atmospheric pressure after completing the reaction ensures solvent-free residues in products. The resulting polypeptides present null cytotoxicity according to MTT and NR analyses, as well as Calcein/EthD-1 assay in human cells.
Collapse
|
21
|
Cao Y, Zhou L, Fang Z, Zou Z, Zhao J, Zuo X, Li G. Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chem Commun (Camb) 2023; 59:3383-3398. [PMID: 36808189 DOI: 10.1039/d2cc06824a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Early screening and diagnosis are the most effective ways to prevent the occurrence and progression of cancers, thus many biosensing strategies have been developed to achieve economic, rapid, and effective detection of various cancer biomarkers. Recently, functional peptides have been gaining increasing attention in cancer-related biosensing due to their advantageous features of a simple structure, ease of synthesis and modification, high stability, and good biorecognition, self-assembly and antifouling capabilities. Functional peptides can not only act as recognition ligands or enzyme substrates for the selective identification of different cancer biomarkers but also function as interfacial materials or self-assembly units to improve the biosensing performances. In this review, we summarize the recent advances in functional peptide-based biosensing of cancer biomarkers according to the used techniques and the roles of peptides. Particular attention is focused on the use of electrochemical and optical techniques, both of which are the most commonly used techniques in the field of biosensing. The challenges and promising prospects of functional peptide-based biosensors in clinical diagnosis are also discussed.
Collapse
Affiliation(s)
- Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Liang Zhou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhikai Fang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zihan Zou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
22
|
An HW, Hou DY, Yang J, Wang ZQ, Wang MD, Zheng R, Zhang NY, Hu XJ, Wang ZJ, Wang L, Liu D, Hao JF, Xu W, Zhao Y, Wang H. A bispecific glycopeptide spatiotemporally regulates tumor microenvironment for inhibiting bladder cancer recurrence. SCIENCE ADVANCES 2023; 9:eabq8225. [PMID: 36857458 PMCID: PMC9977173 DOI: 10.1126/sciadv.abq8225] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Up to 75% of bladder cancer patients suffer from recurrence due to postoperative tumor implantation. However, clinically used Bacillus Calmette-Guerin (BCG) treatment failed to inhibit the recurrence. Here, we report a bispecific glycopeptide (bsGP) that simultaneously targets CD206 on tumor-associated macrophages (TAMs) and CXCR4 on tumor cells. bsGP repolarizes protumoral M2-like TAMs to antitumor M1-like that mediated cytotoxicity and T cell recruitment. Meanwhile, bsGP is cleaved by the MMP-2 enzyme to form nanostructure for the long-term inhibition of CXCR4 downstream signaling, resulting in reduced tumor metastasis and promoted T cell infiltration. In orthotopic bladder tumor models, bsGP reduced the postoperative recurrence rate to 22%. In parallel, the recurrence rates of 89 and 78% were treated by doxycycline and BCG used in clinic, respectively. Mechanistic studies reveal that bsGP reduces the matrix microenvironment barrier, increasing the spatially redirected CD8+ T cells to tumor cells. We envision that bis-targeting CD206 and CXCR4 may pave the way to inhibit tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Jia Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zhi-Jia Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Lu Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Di Liu
- Core Facility for Protein Research, Institute of Boiphysics, Chinese Academy of Science, Beijing, China
| | - Jun-Feng Hao
- Core Facility for Protein Research, Institute of Boiphysics, Chinese Academy of Science, Beijing, China
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Core Facility for Protein Research, Institute of Boiphysics, Chinese Academy of Science, Beijing, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Sun Y, Zhang Y, Guo X, Wang Y, He P, Xiao C. Oxidation Responsive PEGylated Polyamino Acid Bearing Thioether Pendants for Enhanced Anticancer Drug Delivery. Macromol Biosci 2023; 23:e2200498. [PMID: 36610012 DOI: 10.1002/mabi.202200498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species (ROS) in biological tissues are in a state of dynamic balance. However, many diseases such as cancer and inflammation, are accompanied by a long-term increase in ROS. This situation inspires researchers to use ROS-sensitive nanocarriers for a site-specific release of cargo in pathological areas. Polyamino acid materials with good biodegradability, biocompatibility, and regular secondary structure are widely used in the biomedical field. Herein, a new oxidation responsive PEGylated polyamino acid is synthesised for anticancer drug delivery by ring-opening polymerisation of N-carboxyanhydrides bearing thioether pendants. The obtained block copolymer mPEG-b-PMLG self-assembles into spherical nanoparticles (NPs) in water with diameter ≈68.3 nm. NMR measurement demonstrated that the hydrophobic thioether pendants in the NPs can be selectively oxidised to hydrophilic sulfoxide groups by H2 O2 , which will lead to the disassociation of NPs. In vitro drug release results indicated that the encapsulated Nile red is selectively released in the trigger of 10 mM H2 O2 in PBS. Finally, anticancer drug doxorubicin (DOX) is encapsulated to the NPs, and the obtained NPs/DOX exhibits an improved antitumor efficacy in 4T1 tumour-bearing mice and lower cardiotoxicity than free DOX. These results indicates that the mPEG-b-PMLG NPs are promising for anticancer drug delivery.
Collapse
Affiliation(s)
- Yitao Sun
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xin Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Yanping Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
24
|
Liu H, Zhou Y, Liu Y, Wang Z, Zheng Y, Peng C, Tian M, Zhang Q, Li J, Tan H, Fu Q, Ding M. Protein-Inspired Polymers with Metal-Site-Regulated Ordered Conformations. Angew Chem Int Ed Engl 2023; 62:e202213000. [PMID: 36353928 DOI: 10.1002/anie.202213000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Metal ions play critical roles in facilitating peptide folding and inducing conformational transitions, thereby impacting on the biological activity of many proteins. However, the effect of metal sites on the hierarchical structures of biopolymers is still poorly understood. Herein, inspired by metalloproteins, we report an order-to-order conformational regulation in synthetic polymers mediated by a variety of metal ions. The copolymers are decorated with clinically available desferrioxamine (DFO) as an exogenous ligand template, which presents a geometric constraint toward peptide backbone via short-range hydrogen bonding interactions, thus dramatically altering the secondary conformations and self-assembly behaviors of polypeptides and allowing for a controllable β-sheet to α-helix transition modulated by metal-ligand interactions. These metallopolymers could form ferritin-inspired hierarchical structures with high stability and membrane activity for efficient brain delivery across the blood-brain barrier (BBB) and long-lasting magnetic resonance imaging (MRI) in vivo.
Collapse
Affiliation(s)
- Hang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
25
|
Xiao X, Zhou M, Cong Z, Zou J, Liu R. Advance in the Polymerization Strategy for the Synthesis of β-Peptides and β-Peptoids. Chembiochem 2023; 24:e202200368. [PMID: 36226554 DOI: 10.1002/cbic.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/20/2022] [Indexed: 02/04/2023]
Abstract
Peptide mimics, possessing excellent biocompatibility and protease stability, have attracted broad attention and research in the biomedical field. β-Peptides and β-peptoids, as two types of vital peptide mimics, have demonstrated great potential in the field of foldamers, antimicrobials and protein binding, etc. Currently, the main synthetic strategies for β-peptides and β-peptoids include solid-phase synthesis and polymerization. Among them, polymerization in one-pot can minimize the repeated separation and purification used in solid-phase synthesis, and has the advantages of high efficiency and low cost, and can synthesize β-peptides and β-peptoids with high molecular weight. This review summarizes the polymerization methods for β-peptides and β-peptoids. Moreover, future developments of the polymerization method for the synthesis of β-peptides and β-peptoids will be discussed.
Collapse
Affiliation(s)
- Ximian Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Jingcheng Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China.,East China University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
26
|
Murphy RD, Garcia RV, Oh SJ, Wood TJ, Jo KD, Read de Alaniz J, Perkins E, Hawker CJ. Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207542. [PMID: 36305041 DOI: 10.1002/adma.202207542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Hydrogels hold much promise for 3D printing of functional living materials; however, challenges remain in tailoring mechanical robustness as well as biological performance. In addressing this challenge, the modular synthesis of functional hydrogels from 3-arm diblock copolypeptide stars composed of an inner poly(l-glutamate) domain and outer poly(l-tyrosine) or poly(l-valine) blocks is described. Physical crosslinking due to ß-sheet assembly of these star block copolymers gives mechanical stability during extrusion printing and the selective incorporation of methacrylate units allows for subsequent photocrosslinking to occur under biocompatible conditions. This permits direct ink writing (DIW) printing of bacteria-based mixtures leading to 3D objects with high fidelity and excellent bacterial viability. The tunable stiffness of different copolypeptide networks enables control over proliferation and colony formation for embedded Escherichia coli bacteria as demonstrated via isopropyl ß-d-1-thiogalactopyranoside (IPTG) induction of green fluorescent protein (GFP) expression. This translation of molecular structure to network properties highlights the versatility of these polypeptide hydrogel systems with the combination of writable structures and biological activity illustrating the future potential of these 3D-printed biocomposites.
Collapse
Affiliation(s)
- Robert D Murphy
- Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ronnie V Garcia
- Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Seung J Oh
- Construction Engineering Research Laboratory (CERL), US Army Corps Engineers Engineering Research and Development Center (USACE ERDC), Champaign, IL, 61822, USA
| | - Tanner J Wood
- Construction Engineering Research Laboratory (CERL), US Army Corps Engineers Engineering Research and Development Center (USACE ERDC), Champaign, IL, 61822, USA
| | - Kyoo D Jo
- Construction Engineering Research Laboratory (CERL), US Army Corps Engineers Engineering Research and Development Center (USACE ERDC), Champaign, IL, 61822, USA
| | - Javier Read de Alaniz
- Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ed Perkins
- Environmental Laboratory (EL), USACE ERDC, Vicksburg, MS, 39180, USA
| | - Craig J Hawker
- Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Materials Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
27
|
Rohmer M, Freudenberg J, Binder WH. Secondary Structures in Synthetic Poly(Amino Acids): Homo- and Copolymers of Poly(Aib), Poly(Glu), and Poly(Asp). Macromol Biosci 2022; 23:e2200344. [PMID: 36377468 DOI: 10.1002/mabi.202200344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The secondary structure of poly(amino acids) is an excellent tool for controlling and understanding the functionality and properties of proteins. In this perspective article the secondary structures of the homopolymers of oligo- and poly-glutamic acid (Glu), aspartic acid (Asp), and α-aminoisobutyric acid (Aib) are discussed. Information on external and internal factors, such as the nature of side groups, interactions with solvents and interactions between chains is reviewed. A special focus is directed on the folding in hybrid-polymers consisting of oligo(amino acids) and synthetic polymers. Being part of the SFB TRR 102 "Polymers under multiple constraints: restricted and controlled molecular order and mobility" this overview is embedded into the cross section of protein fibrillation and supramolecular polymers. As polymer- and amino acid folding is an important step for the utilization and design of future biomolecules these principles guide to a deeper understanding of amyloid fibrillation.
Collapse
Affiliation(s)
- Matthias Rohmer
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Jan Freudenberg
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | | |
Collapse
|
28
|
Klemm P, Solomun JI, Rodewald M, Kuchenbrod MT, Hänsch VG, Richter F, Popp J, Hertweck C, Hoeppener S, Bonduelle C, Lecommandoux S, Traeger A, Schubert S. Efficient Gene Delivery of Tailored Amphiphilic Polypeptides by Polyplex Surfing. Biomacromolecules 2022; 23:4718-4733. [PMID: 36269943 DOI: 10.1021/acs.biomac.2c00919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Within this study, an amphiphilic and potentially biodegradable polypeptide library based on poly[(4-aminobutyl)-l-glutamine-stat-hexyl-l-glutamine] [P(AB-l-Gln-stat-Hex-l-Gln)] was investigated for gene delivery. The influence of varying proportions of aliphatic and cationic side chains affecting the physicochemical properties of the polypeptides on transfection efficiency was investigated. A composition of 40 mol% Hex-l-Gln and 60 mol % AB-l-Gln (P3) was identified as best performer over polypeptides with higher proportions of protonatable monomers. Detailed studies of the transfection mechanism revealed the strongest interaction of P3 with cell membranes, promoting efficient endocytic cell uptake and high endosomal release. Spectrally, time-, and z-resolved fluorescence microscopy further revealed the crucial role of filopodia surfing in polyplex-cell interaction and particle internalization in lamellipodia regions, followed by rapid particle transport into cells. This study demonstrates the great potential of polypeptides for gene delivery. The amphiphilic character improves performance over cationic homopolypeptides, and the potential biodegradability is advantageous toward other synthetic polymeric delivery systems.
Collapse
Affiliation(s)
- Paul Klemm
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Marko Rodewald
- Leibniz Institute for Photonic Technology Jena, Member of Leibniz Health Technologies, Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Lessingstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Maren T Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Veit G Hänsch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute for Photonic Technology Jena, Member of Leibniz Health Technologies, Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Lessingstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Colin Bonduelle
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
29
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
30
|
Lv Y, Zhao Y, Liu Y, Zhou Z, Shen Y, Jiang L. Self-Assembling Oligo(2-oxazoline) Organogelators for the Encapsulation and Slow Release of Bioactive Volatiles. ACS OMEGA 2022; 7:27523-27531. [PMID: 35967068 PMCID: PMC9366986 DOI: 10.1021/acsomega.2c02905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
Herein, we report a class of distinctive supramolecular nanostructures in situ-generated from the cationic ring-opening polymerization of a particular 2-oxazoline monomer, i.e., 2-(N-tert-butyloxycarbonylaminomethyl)-2-oxazoline (Ox1). Driven by side-chain hydrogen bonding between neighboring molecules and van der Waals interactions, the growing oligomers of Ox1 precipitate in the form of macroscopic platelets when the degree of polymerization reaches 5-7. A similar self-assembly occurred in the block copolymerization of 2-ethyl-2-oxazoline (EtOx) or 2-pentyl-2-oxazoline (PeOx) and Ox1 as the second monomer. These polymeric aggregates were found to disassemble into rod-like nanoparticles under appropriate conditions, and to form stable organogels in some polar solvents like dimethylformamide as well as in natural liquid fragrances such as (R)-carvone, citronellal, and (R)-limonene. Scanning electron microscopy revealed that the morphology of their xerogels was solvent-dependent, mainly with a lamellar or fibrous structure. The rheology measurements confirmed the as-obtained organogels feature an obvious thixotropic character. The storage modulus was about 7-10 times higher than the loss modulus, indicating the physical crosslinking in the gel. The fragrance release profiles showed that the presented supramolecular gel system exhibits good sustained-release effect for the loaded bioactive volatiles.
Collapse
Affiliation(s)
- Yichao Lv
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjiang Zhao
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhang Liu
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liming Jiang
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Intrinsically fluorescent polyureas toward conformation-assisted metamorphosis, discoloration and intracellular drug delivery. Nat Commun 2022; 13:4551. [PMID: 35931687 PMCID: PMC9355952 DOI: 10.1038/s41467-022-32053-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Peptidomimetic polymers have attracted increasing interest because of the advantages of facile synthesis, high molecular tunability, resistance to degradation, and low immunogenicity. However, the presence of non-native linkages compromises their ability to form higher ordered structures and protein-inspired functions. Here we report a class of amino acid-constructed polyureas with molecular weight- and solvent-dependent helical and sheet-like conformations as well as green fluorescent protein-mimic autofluorescence with aggregation-induced emission characteristics. The copolymers self-assemble into vesicles and nanotubes and exhibit H-bonding-mediated metamorphosis and discoloration behaviors. We show that these polymeric vehicles with ultrahigh stability, superfast responsivity and conformation-assisted cell internalization efficiency could act as an “on-off” switchable nanocarrier for specific intracellular drug delivery and effective cancer theranosis in vitro and in vivo. This work provides insights into the folding and hierarchical assembly of biomacromolecules, and a new generation of bioresponsive polymers and nonconventional luminescent aliphatic materials for diverse applications. Biomimetic materials are of interest but can often suffer from limitations caused by the non-native linkages used. Here, the authors report on the creation of amino acid constructed polyureas which can self-assemble into vesicles and nanotubes with aggregation induced fluorescence and the potential for drug delivery applications.
Collapse
|
32
|
Doubly chiral pseudopeptidic macrobicyclic molecular cages: Water-assisted dynamic covalent self-assembly and chiral self-sorting. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
34
|
Ge C, Zhu J, Wu G, Ye H, Lu H, Yin L. ROS-Responsive Selenopolypeptide Micelles: Preparation, Characterization, and Controlled Drug Release. Biomacromolecules 2022; 23:2647-2654. [PMID: 35549178 DOI: 10.1021/acs.biomac.2c00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur-containing polypeptides, capable of reactive oxygen species (ROS)-responsive structural change, are one of the most important building blocks for the construction of polypeptide-based drug delivery systems. However, the relatively low ROS sensitivity of side-chain thioethers limits the biomedical applications of these polypeptides because they usually require a high concentration of ROS beyond the pathological ROS level in the tumor microenvironment. Herein, we report the design and synthesis of a selenium-containing polypeptide, which undergoes random coil-to-extended helix and hydrophobic-to-hydrophilic transitions in the presence of 0.1% H2O2, a concentration that is much lower than the ROS requirement for thioether. ROS-responsive micelles were thus prepared from the amphiphilic copolymer consisting of the hydrophilic poly(ethylene glycol) (PEG) segment and hydrophobic selenopolypeptide segment and were used to encapsulate doxorubicin (DOX). The micelles could be sensitively dissociated inside tumor cells in consequence of ROS-triggered oxidation of side-chain selenoether and structural change of the micelles, thereby efficiently and selectively releasing the encapsulated DOX to kill cancer cells. This work provides an alternative design of ROS-responsive polypeptides with higher sensitivity than that of the existing sulfur-containing polypeptides, which may expand the biomedical applications of polypeptide materials.
Collapse
Affiliation(s)
- Chenglong Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Junliang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huan Ye
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
35
|
Liu Y, Zhao C, Chen C. Chirality-Governed UCST Behavior in Polypeptides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yali Liu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
36
|
Baillargeon P, Robidas R, Toulgoat O, Michaud Z, Legault CY, Rahem T. Crystal Structures of Lignocellulosic Furfuryl Biobased Polydiacetylenes with Hydrogen-Bond Networks: Influencing the Direction of Solid-State Polymerization through Modification of the Spacer Length. CRYSTAL GROWTH & DESIGN 2022; 22:2812-2823. [PMID: 35529068 PMCID: PMC9073937 DOI: 10.1021/acs.cgd.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Indexed: 05/02/2023]
Abstract
We present the topochemical polymerization of two lignocellulosic biobased diacetylenes (DAs) that only differ by an alkyl spacer length of 1 methylene (n = 1) or 3 methylene units (n = 3) between the diyne and carbamate functionalities. Their crystalline molecular organizations have the distinctive feature of being suitable for polymerization in two potential directions, either parallel or skewed to the hydrogen-bonded (HB) network. However, single-crystal structures of the final polydiacetylenes (PDAs) demonstrate that the resulting orientation of the conjugated backbones is different for these two derivatives, which lead to HB supramolecular polymer networks (2D nanosheets) for n = 1 and to independent linear PDA chains with intramolecular HBs for n = 3. Thus, spacer length modification can be considered a new strategy to influence the molecular orientation of conjugated polymer chains, which is crucial for developing the next generation of materials with optimal mechanical and optoelectronic properties. Calculations were performed on model oligodiacetylenes to evaluate the cooperativity effect of HBs in the different crystalline supramolecular packing motifs and the energy profile related to the torsion of the conjugated backbone of a PDA chain (i.e., its ability to adopt planar or helical conformations).
Collapse
Affiliation(s)
- Pierre Baillargeon
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Raphaël Robidas
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Olivier Toulgoat
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Zacharie Michaud
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Claude Y. Legault
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Tarik Rahem
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| |
Collapse
|
37
|
Zhang C, Lu H. Helical Nonfouling Polypeptides for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2688-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Ji S, Lin M, Li Z, Xu L, Fu X, Chen G, Li Z, Sun J. Tunable Aggregation -Induced Emission Fluorophore with the Assistance of the Self -Assembly of Block Copolymers by Controlling the Morphology and Secondary Conformation for Bioimaging. Biomacromolecules 2022; 23:798-807. [PMID: 35041401 DOI: 10.1021/acs.biomac.1c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aggregation-induced emission (AIE) luminogens with highly tunable properties show great potential for many applications. In this study, we synthesized a new family of AIE-type poly(ethylene glycol)-block-poly(9-anthrylmethyl lysine) (PEG-b-PLys-An) diblock copolymers by taking advantage of amphiphilic self-assembly and rigid helical backbones. These copolymers can self-assemble into various assemblies through nanoprecipitation methods. The micelles using N,N-dimethylformamide (DMF) as a cosolvent present brighter fluorescence than the vesicles prepared from tetrahydrofuran (THF). We demonstrate that the decreased solubility of copolymers in DMF results in the formation of more compact micelles with more excimer formation during the self-assembly process, while better solvent THF favors the formation of vesicles with stretched core chains. In addition, the secondary conformation of the polypeptide block shows pronounced effects on the fluorescence property. We further show the internalization of the assemblies using two types of cells by cellular uptake experiments. By the delicate design of the block copolymer, we successfully prepare the morphology- and conformation-dependent AIE materials for potential biomedical applications.
Collapse
Affiliation(s)
- Sifan Ji
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zenghao Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
39
|
Xu X, Liu S, Gao H, Li M, He J, Zheng Y, Song W, Zheng N. Versatile fully-substituted triazole-functionalized polypeptides with a stable α-helical conformation for gene delivery. Polym Chem 2022. [DOI: 10.1039/d2py00894g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A library of polypeptides bearing fully-substituted triazoles (FT) was developed via a Cu-catalyzed multicomponent reaction (MCR), which avoided the undesired hydrogen bonding and stabilized the α-helix in a broad pH range.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shuxin Liu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - He Gao
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ming Li
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Junnan He
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yubin Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wangze Song
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Nan Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
40
|
Li K, Li Z, Shen Y, Fu X, Chen C, Li Z. Organobase 1,1,3,3-tetramethyl guanidine catalyzed rapid ring-opening polymerization of α-amino acid N-carboxyanhydrides adaptive to amine, alcohol and carboxyl acid initiators. Polym Chem 2022. [DOI: 10.1039/d1py01508g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For amine, hydroxyl and carboxyl terminated initiators, the organobase 1,1,3,3-tetramethylguanidine (TMG) catalyzes the rapid polymerization to afford polypeptides with controllable molecular weights and dispersities.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zheng Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
41
|
Yang T, Benson K, Fu H, Xue T, Song Z, Duan H, Xia H, Kalluri A, He J, Cheng J, Kumar CV, Lin Y. Modeling and Designing Particle-Regulated Amyloid-like Assembly of Synthetic Polypeptides in Aqueous Solution. Biomacromolecules 2021; 23:196-209. [PMID: 34964619 DOI: 10.1021/acs.biomac.1c01230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cells, actin and tubulin polymerization is regulated by nucleation factors, which promote the nucleation and subsequent growth of protein filaments in a controlled manner. Mimicking this natural mechanism to control the supramolecular polymerization of macromolecular monomers by artificially created nucleation factors remains a largely unmet challenge. Biological nucleation factors act as molecular scaffolds to boost the local concentrations of protein monomers and facilitate the required conformational changes to accelerate the nucleation and subsequent polymerization. An accelerated assembly of synthetic poly(l-glutamic acid) into amyloid fibrils catalyzed by cationic silica nanoparticle clusters (NPCs) as artificial nucleation factors is demonstrated here and modeled as supramolecular polymerization with a surface-induced heterogeneous nucleation pathway. Kinetic studies of fibril growth coupled with mechanistic analysis demonstrate that the artificial nucleators predictably accelerate the supramolecular polymerization process by orders of magnitude (e.g., shortening the assembly time by more than 10 times) when compared to the uncatalyzed reaction, under otherwise identical conditions. Amyloid-like fibrillation was supported by a variety of standard characterization methods. Nucleation followed a Michaelis-Menten-like scheme for the cationic silica NPCs, while the corresponding anionic or neutral nanoparticles had no effect on fibrillation. This approach shows the effectiveness of charge-charge interactions and surface functionalities in facilitating the conformational change of macromolecular monomers and controlling the rates of nucleation for fibril growth. Molecular design approaches like these inspire the development of novel materials via biomimetic supramolecular polymerizations.
Collapse
Affiliation(s)
- Tianjian Yang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kyle Benson
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hailin Fu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hongwei Xia
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ankarao Kalluri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jie He
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jianjun Cheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
42
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water-Insensitive Polymerization on α-Amino Acid N-Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021; 60:26063-26071. [PMID: 34569145 DOI: 10.1002/anie.202103540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/23/2021] [Indexed: 01/16/2023]
Abstract
We design the tetraalkylammonium carboxylate-initiated superfast polymerization on α-amino acid N-carboxyanhydrides (NCA) for efficient synthesis of polypeptides. Carboxylates, as a new class of initiator for NCA polymerization, can initiate the superfast NCA polymerization without the need of extra catalysts and the polymerization can be operated in open vessels at ambient condition without the use of glove box. Tetraalkylammonium carboxylate-initiated polymerization on NCA easily affords block copolymers with at least 15 blocks. Moreover, this method avoids tedious purification steps and enables direct polymerization on crude NCAs in aqueous environments to prepare polypeptides and one-pot synthesis of polypeptide nanoparticles. These advantages and the mild polymerization condition of tetraalkylammonium carboxylate-initiated NCA polymerization imply its great potential in functional exploration and application of polypeptides.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiacheng Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minghui Zhu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
43
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water‐Insensitive Polymerization on α‐Amino Acid
N
‐Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Jiacheng Chen
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Minghui Zhu
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
44
|
Li L, Cen J, Pan W, Zhang Y, Leng X, Tan Z, Yin H, Liu S. Synthesis of Polypeptides with High-Fidelity Terminal Functionalities under NCA Monomer-Starved Conditions. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9826046. [PMID: 34877538 PMCID: PMC8617576 DOI: 10.34133/2021/9826046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/22/2021] [Indexed: 01/01/2023]
Abstract
Controlled polypeptide synthesis via α-amino acid N-carboxylic anhydride (NCA) polymerization using conventional primary amine initiators encounters two major obstacles: (i) normal amine mechanism (NAM) and activated monomer mechanism (AMM) coexist due to amine basicity and nucleophilicity and (ii) NCA is notoriously sensitive towards moisture and heat and unstable upon storage. We serendipitously discover that N-phenoxycarbonyl-functionalized α-amino acid (NPCA), a latent NCA precursor, could be polymerized solely based on NAM with high initiating efficiency by using primary amine hydrochloride as an initiator. The polymerization affords well-defined polypeptides with narrow polydispersity and high-fidelity terminal functionalities, as revealed by the clean set of MALDI-TOF MS patterns. We further demonstrate successful syntheses of random and block copolypeptides, even under open-vessel conditions. Overall, the integration of moisture-insensitive and air-tolerant NPCA precursors with stable primary amine hydrochloride initiators represents a general strategy for controlled synthesis of high-fidelity polypeptides with sophisticated functions.
Collapse
Affiliation(s)
- Lei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Cen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhao Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuben Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuanxi Leng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengqi Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Yin
- Mass Spectrometry Lab, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
45
|
Gong C, Sun J, Xiao Y, Qu X, Lang M. Synthetic Mimics of Antimicrobial Peptides for the Targeted Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater 2021; 10:e2101244. [PMID: 34410043 DOI: 10.1002/adhm.202101244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Antibacterial materials are highly demanded in treatment of bacterial infection, especially severe ones with multidrug-resistance. Herein, pH-responsive polypeptide, i.e., poly-L-lysine modified by 1-(propylthio)acetic acid-3-octylimidazolium and citraconic anhydride (PLL-POIM-CA), is synthesized by post-polymerization modification of poly-L-lysine (PLL) with 1-(propylthio)acetic acid-3-octylimidazolium (POIM) and citraconic anhydride (CA). It is observed that PLL-POIM-CA is stable under normal physiological condition, while CA cleaves rapidly at weakly acidic environment like bacterial infectious sites. The hydrolyzed PLL-POIM-CA exhibits excellent broad-spectrum antibacterial activities against Gram-negative bacteria of Escherichia coli and Gram-positive bacteria of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). In particular, the minimum inhibitory concentration (MIC) against multidrug-resistant bacteria like MRSA is as low as 7.8 µg mL-1 . Moreover, PLL-POIM-CA exhibits good biocompatibility with mouse fibroblast cells (L929) in vitro and improved hemocompatibility with an HC50 exceeding 5000 µg mL-1 . Therefore, PLL-POIM-CA displays an excellent bacteria versus cells selectivity (HC50 /MIC) over 534, which is 53 times higher than natural antimicrobial peptide of indolicidin. It is further demonstrated in vivo that the antimicrobial polypeptide effectively accelerates MRSA-infected wound healing by relieving local inflammatory response. Therefore, this targeted antimicrobial polypeptide has broad application prospects for the treatment of multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Chenyu Gong
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Junjie Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xue Qu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
46
|
Tinajero-Díaz E, Kimmins SD, García-Carvajal ZY, Martínez de Ilarduya A. Polypeptide-based materials prepared by ring-opening polymerisation of anionic-based α-amino acid N-carboxyanhydrides: A platform for delivery of bioactive-compounds. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation‐Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zuojie Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zifen Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hang Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jing Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chuan Peng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Mingming Ding
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
48
|
Zheng B, Bai T, Tao X, Ling J. An Inspection into Multifarious Ways to Synthesize Poly(Amino Acid)s. Macromol Rapid Commun 2021; 42:e2100453. [PMID: 34562289 DOI: 10.1002/marc.202100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Poly(α-amino acid)s (PAAs) attract growing attention due to their essential role in the application as biomaterials. To synthesize PAAs with desired structures and properties, scientists have developed various synthetic techniques with respective advantages. Here, different approaches to preparing PAAs are inspected. Basic features and recent progresses of these methods are summarized, including polymerizations of amino acid N-carboxyanhydrides (NCAs), amino acid N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino acids (NPCs), as well as other synthetic routes. NCA is the most classical monomer to prepare PAAs with high molecular weights (MWs). NTA polymerizations are promising alternative pathways to produce PAAs, which can tolerate nucleophiles including alcohols, mercaptans, carboxyl acids, and water. By various techniques including choosing appropriate solvents or using organic acids as promoters, NTAs polymerize to produce polypeptoids and polypeptides with narrow dispersities and designed MWs up to 55.0 and 57.0 kg mol-1 , respectively. NPC polymerizations are phosgene-free ways to synthesize polypeptides and polypeptoids. For the future prospects, detail investigations into polymerization mechanisms of NTA and NPC are expected. The synthesis of PAAs with designed topologies and assembly structures is another intriguing topic. The advantages and unsettled problems in various synthetic ways are discussed for readers to choose appropriate approaches for PAAs.
Collapse
Affiliation(s)
- Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinfeng Tao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
49
|
Du C, Zhou L, Qian J, He M, Zhang ZG, Feng C, Zhang Y, Zhang R, Dong CM. Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44002-44012. [PMID: 34494817 DOI: 10.1021/acsami.1c11381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ferroptosis therapy (FT) based on the Fenton reaction of ferrous nanoparticles has been becoming a unique strategy for cancer treatment; however, current ferrous nanoparticles suffer from slower Fenton reaction kinetics, lower ferroptosis efficacy, and long-term toxicity, so it is urgent to construct biocompatible ferrous nanomaterials with highly efficient Fenton reaction activity for cancer FT. Inspired by single-atom catalysis and size-determined tumor penetration, we conceived an innovative strategy for constructing ultrasmall zwitterionic polypeptide-coordinated nanohybrids of PCGA@FeNP with about 6 nm by utilizing thiol/hydroxyl-iron cooperative coordination chemistry. The ultrasmall size, unsaturated ferrous coordination, and intracellular acidic pH could accelerate the Fenton reaction, thus boosting the efficacy of ferroptosis. Moreover, those coordinated nanohybrids exhibited prominent photothermia with 59.5% conversion efficiency, further accelerating the Fenton reaction and inducing a synergistic effect between FT and photothermal therapy (PTT). In vitro and in vivo GPX-4 expression ascertained that PCGA@FeNP indeed induced effective FT and synergistic FT-PTT. Remarkably, in vivo FT-PTT completely ablated 4T1 solid tumors by one treatment, presenting outstanding and synergistic antitumor efficacy via the photothermia-boosted ferroptosis and apoptosis pathways. This work supplies a practicable strategy to fabricate ultrasmall zwitterionic coordination nanohybrids for highly efficient cancer FT and FT-PTT theranostics with potential clinical transitions.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Research Center for Precision Medicine, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Zhang
- Joint Research Center for Precision Medicine, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
50
|
Li D, Zhao D, He C, Chen X. Crucial Impact of Residue Chirality on the Gelation Process and Biodegradability of Thermoresponsive Polypeptide Hydrogels. Biomacromolecules 2021; 22:3992-4003. [PMID: 34464095 DOI: 10.1021/acs.biomac.1c00785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thermosensitive polypeptide hydrogels have gained considerable attention in potential biomedical applications, of which the polymer structure may be tuned by residue chirality. In this study, polypeptide-based block copolymers with different chiralities were synthesized by ring-opening polymerization of γ-ethyl-l-glutamate N-carboxyanhydride and/or γ-ethyl-d-glutamate N-carboxyanhydride using amino-terminated monomethoxy poly(ethylene glycol) as a macroinitiator. All mPEG-polypeptide copolymers underwent sol-gel transition with an increase in temperature. The block copolymers with mixed enantiomeric residues of γ-ethyl-l-glutamate (ELG) and γ-ethyl-d-glutamate (EDG) in the polypeptide blocks exhibited lower critical gelation concentrations and lower critical gelation temperatures compared with those composed of pure ELG or EDG residues. We established that the difference in gelation properties between the copolymers was derived from the distinction of the secondary structures. We further demonstrated the influence of polypeptide chirality on the degradability and biocompatibility of hydrogels in vivo. Our findings provide insights into the design of hydrogels having tailored secondary conformation, gelation property, and biodegradability.
Collapse
Affiliation(s)
- Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|