1
|
Goo BS, Baek JW, Seo M, Kim HJ, Wi DH, Kwon Y, Yoon DK, Lee YW, Han SW. Freestanding Penta-Twinned Pd-Ag Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60331-60339. [PMID: 39439403 DOI: 10.1021/acsami.4c14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
2D metal nanosheets have attracted significant attention as efficient catalysts for various important chemical reactions. However, the development of metal nanosheets with controlled compositions and morphologies has been slow due to the challenges associated with synthesizing thermodynamically unfavorable 2D structures. Herein, we report a synthesis route of freestanding Pd-Ag penta-twinned nanosheets (Pd-Ag ptNSs) with distinct 5-fold twin boundaries. Through the coreduction of Ag and Pd precursors on presynthesized Pd ptNSs, Ag could be homogeneously alloyed with Pd, leading to the formation of well-defined Pd-Ag ptNSs. The promotional effects of the bimetallic composition, 2D structure, and twin boundaries on catalysis were studied by using Pd-Ag ptNS-catalyzed H2 production from formic acid decomposition as a model reaction. Notably, the catalytic activity of the Pd-Ag ptNSs drastically outperformed those of monometallic, bimetallic, and 3D counterparts, such as Pd ptNSs, Pd-Ag nanosheets without a TB, and Pd-Ag octahedral nanocrystals, demonstrating the promising potential of the integration of twin boundaries and multiple compositions in the development of high-performance 2D nanocatalysts.
Collapse
Affiliation(s)
- Bon Seung Goo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Jin Wook Baek
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Minji Seo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | | | - Dae Han Wi
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Yongmin Kwon
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Dong Ki Yoon
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Young Wook Lee
- Department of Chemistry Education and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Sang Woo Han
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
2
|
Zhang D, Bu J, Dou X, Yan Y, Liu Q, Wang X, Sun Z, Guo G, Zheng K, Deng J. Ultra-Large Two-Dimensional Metal Nanowire Networks by Microfluidic Laminar Flow Synthesis for Formic Acid Electrooxidation. Angew Chem Int Ed Engl 2024; 63:e202408765. [PMID: 38797705 DOI: 10.1002/anie.202408765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Despite the great research interest in two-dimensional metal nanowire networks (2D MNWNs) due to their large specific surface area and abundance of unsaturated coordination atoms, their controllable synthesis still remains a significant challenge. Herein, a microfluidics laminar flow-based approach is developed, enabling the facile preparation of large-scale 2D structures with diverse alloy compositions, such as PtBi, AuBi, PdBi, PtPdBi, and PtAuCu alloys. Remarkably, these 2D MNWNs can reach sizes up to submillimeter scale (~220 μm), which is significantly larger than the evolution from the 1D or 3D counterparts that typically measure only tens of nanometers. The PdBi 2D MNWNs affords the highest specific activity for formic acid (2669.1 mA mg-1) among current unsupported catalysts, which is 103.5 times higher than Pt-black, respectively. Furthermore, in situ Fourier transform infrared (FTIR) experiments provide comprehensive evidence that PdBi 2D MNWNs catalysts can effectively prevent CO* poisoning, resulting in exceptional activity and stability for the oxidation of formic acid.
Collapse
Affiliation(s)
- Dongtang Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing, 100124, PR China
| | - Jiahui Bu
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiangnan Dou
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Qiqi Liu
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Zaicheng Sun
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing, 100124, PR China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
3
|
Wei Z, Shen Y, Wang X, Song Y, Guo J. Recent advances of doping strategy for boosting the electrocatalytic performance of two-dimensional noble metal nanosheets. NANOTECHNOLOGY 2024; 35:402003. [PMID: 38986444 DOI: 10.1088/1361-6528/ad6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Benefiting from the ultrahigh specific surface areas, massive exposed surface atoms, and highly tunable microstructures, the two-dimensional (2D) noble metal nanosheets (NSs) have presented promising performance for various electrocatalytic reactions. Nevertheless, the heteroatom doping strategy, and in particular, the electronic structure tuning mechanisms of the 2D noble metal catalysts (NMCs) yet remain ambiguous. Herein, we first review several effective strategies for modulating the electrocatalytic performance of 2D NMCs. Then, the electronic tuning effect of hetero-dopants for boosting the electrocatalytic properties of 2D NMCs is systematically discussed. Finally, we put forward current challenges in the field of 2D NMCs, and propose possible solutions, particularly from the perspective of the evolution of electron microscopy. This review attempts to establish an intrinsic correlation between the electronic structures and the catalytic properties, so as to provide a guideline for designing high-performance electrocatalysts.
Collapse
Affiliation(s)
- Zebin Wei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yongqing Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Xudong Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030051, People's Republic of China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030051, People's Republic of China
| |
Collapse
|
4
|
Lv H, Mao Y, Yao H, Ma H, Han C, Yang YY, Qiao ZA, Liu B. Ir-Doped CuPd Single-Crystalline Mesoporous Nanotetrahedrons for Ethylene Glycol Oxidation Electrocatalysis: Enhanced Selective Cleavage of C-C Bond. Angew Chem Int Ed Engl 2024; 63:e202400281. [PMID: 38339811 DOI: 10.1002/anie.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
The development of highly efficient electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells is of decisive importance to hold higher energy efficiency. Despite some achievements, their progress, especially electrocatalytic selectivity to complete oxidated C1 products, is remarkably slower than expected. In this work, we developed a facile aqueous synthesis of Ir-doped CuPd single-crystalline mesoporous nanotetrahedrons (Ir-CuPd SMTs) as high-performance electrocatalyst for promoting oxidation cleavage of C-C bond in alkaline EG oxidation reaction (EGOR) electrocatalysis. The synthesis relied on precise reduction/co-nucleation and epitaxial growth of Ir, Cu and Pd precursors with cetyltrimethylammonium chloride as the mesopore-forming surfactant and extra Br- as the facet-selective agent under ambient conditions. The products featured concave nanotetrahedron morphology enclosed by well-defined (111) facets, single-crystalline and mesoporous structure radiated from the center, and uniform elemental composition without any phase separation. Ir-CuPd SMTs disclosed remarkably enhanced electrocatalytic activity and excellent stability as well as superior selectivity of C1 products for alkaline EGOR electrocatalysis. Detailed mechanism studies demonstrated that performance improvement came from structural and compositional synergies, which kinetically accelerated transports of electrons/reactants within active sites of penetrated mesopores and facilitated oxidation cleavage of high-energy-barrier C-C bond of EG for desired C1 products. More interestingly, Ir-CuPd SMTs performed well in coupled electrocatalysis of anode EGOR and cathode nitrate reduction, highlighting its high potential as bifunctional electrocatalyst in various applications.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yumeng Mao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 130012, Changchun, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, China
| | - Huazhong Ma
- Key Laboratory of General Chemistry of State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, 610041, Chengdu, China
| | - Chenyu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Yao-Yue Yang
- Key Laboratory of General Chemistry of State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, 610041, Chengdu, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 130012, Changchun, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
5
|
Sun C, Tan Y, Wen Y, Yang Y, Guo F, Huang H, Ma W, Cheng S. In situ growth engineering of ultrathin dendritic PdNi nanosheets on nitrogen-doped V 2CT x MXenes for efficient hydrogen evolution. NANOSCALE 2024; 16:4014-4024. [PMID: 38349080 DOI: 10.1039/d3nr06502b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immobilizing metal nanoparticles on a support is crucial for catalysts' stability and spatial distribution. MXenes are promising substrates for in situ growth engineering of various electrocatalysts owing to their merits. A stronger binding capacity can be achieved between the in situ-fabricated catalysts and MXenes compared to a common physical combination. Thus, synergistically utilizing morphology modulation, composition optimization, and the interfacial interaction between metal catalysts and supports will maximize the electrocatalytic activity. However, most reported in situ-formed catalysts on MXenes result in solid 0D nanoparticles and in situ growth of nanoalloy catalysts on MXenes with a precisely controlled morphology is still lacking. Herein, nanodendritic PdNi alloys are in situ grown on nitrogen-doped V2CTx, serving as efficient electrocatalysts toward the hydrogen evolution reaction (HER). Thanks to the synergistic effect of the unique nanodendritic structure of PdNi, the merits of N-TBA-V2CTx nanosheets, and the strong metal-support interaction between the PdNi and the N-TBA-V2CTx support, the in situ-formed Pd58Ni42/N-TBA-V2CTx electrocatalyst shows excellent HER performance with an ultralow overpotential of 44.1 mV to achieve 10 mA cm-2 and a lowest Tafel slope of 39.4 mV dec-1, which outperforms Pd58Ni42/TBA-V2CTx, Pd58Ni42, and Pd/C. Remarkably, the Pd58Ni42/N-TBA-V2CTx catalyst can maintain 92.3% of its initial activity even after 50 h of continuous operation.
Collapse
Affiliation(s)
- Chaohai Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Yong Tan
- Jiangsu Engineering Research Center for Cathode Materials for Power and Energy Storage Batteries, BTR New Material Group Co., Ltd, Shenzhen 518000, China
| | - Yong Wen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Yang Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Fang Guo
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Hongyan Huang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| | - Wanli Ma
- Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Si Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
| |
Collapse
|
6
|
Qiao M, Wei Y, Dong YJ, Wang JX, Chen JF. A Universal Approach for Controllable Synthesis of Homogeneously Alloyed PtM Nanoflowers toward Enhanced Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307283. [PMID: 38109154 DOI: 10.1002/smll.202307283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Platinum (Pt)-based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size-tunable Pt-based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro-mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt-based nanoflowers are instantaneously achieved at room temperature. As a proof-of-concept, as-synthesized Platinum-Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti-CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt -1 , 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d-band center of Pt caused by high alloying degree.
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan-Jun Dong
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Lv H, Liu B. Two-dimensional mesoporous metals: a new era for designing functional electrocatalysts. Chem Sci 2023; 14:13313-13324. [PMID: 38033890 PMCID: PMC10685317 DOI: 10.1039/d3sc04244h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Two-dimensional (2D) mesoporous metals contribute a unique class of electrocatalyst materials for electrochemical applications. The penetrated mesopores of 2D mesoporous metals expose abundant accessible undercoordinated metal sites, while their 2D nanostructures accelerate the transport of electrons and reactants. Therefore, 2D mesoporous metals have exhibited add-in structural functions with great potential in electrocatalysis that not only enhance electrocatalytic activity and stability but also optimize electrocatalytic selectivity. In this Perspective, we summarize recent progress in the design, synthesis, and electrocatalytic performance of 2D mesoporous metals. Four main strategies for synthesizing 2D mesoporous metals, named the CO (and CO container) induced route, halide ion-oriented route, interfacial growth route, and metal oxide atomic reconstruction route, are presented in detail. Moreover, electrocatalytic applications in several important reactions are summarized to highlight the add-in structural functions of 2D mesoporous metals in enhancing electrochemical activity, stability, and selectivity. Finally, current challenges and future directions are discussed in this area. This Perspective offers some important insights into both fundamental investigations and practical applications of novel high-performance functional electrocatalysts.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
8
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Zhao F, Nie S, Wu L, Yuan Q, Wang X. Porous, Ultrathin PtAgBiTe Nanosheets for Direct Hydrazine Hydrate Fuel Cell Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303672. [PMID: 37378656 DOI: 10.1002/adma.202303672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Ultrathin 2D nanomaterials have attracted extensive attention due to their fascinating applications in sustainable and clean-energy-related devices, but obtaining ultrathin 2D multimetallic polycrystalline structures with large lateral dimensions remains a challenge. In this study, ultrathin 2D porous PtAgBiTe and PtBiTe polycrystalline nanosheets (PNSs) are obtained via a visible-light-photoinduced Bi2 Te3 -nanosheet-mediated route. The PtAgBiTe PNSs are assembled by sub-5 nm grains with widths beyond 700 nm. Strain and ligand effects originating from the porous, curly polycrystalline structure endow the PtAgBiTe PNSs with robust hydrazine hydrate oxidation reaction activity. Theoretical research demonstrates that the modified Pt activates the N-H bonds in N2 H4 during the reaction, and strong hybridization between Pt-5d and N-2p facilitates dehydrogenation while reducing energy consumption. The peak power densities of the PtAgBiTe PNSs in actual hydrazine-O2 /air fuel cell devices are boosted to 532.9/315.9 mW cm-2 , while those of the commercial Pt/C are 394.7/157.9 mW cm-2 . This work provides a strategy not only for preparing ultrathin multimetallic PNSs but also for finding promising electrocatalysts for actual hydrazine fuel cells.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Siyang Nie
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Hu X, An Z, Wang W, Lin X, Chan TS, Zhan C, Hu Z, Yang Z, Huang X, Bu L. Sub-Monolayer SbO x on PtPb/Pt Nanoplate Boosts Direct Formic Acid Oxidation Catalysis. J Am Chem Soc 2023; 145:19274-19282. [PMID: 37585588 DOI: 10.1021/jacs.3c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
To promote the commercialization of direct formic acid fuel cell (DFAFC), it is vital to explore new types of direct formic acid oxidation (FAOR) catalysts with high activity and direct pathway. Here, we report the synthesis of intermetallic platinum-lead/platinum nanoplates inlaid with sub-monolayer antimony oxide surface (PtPb/Pt@sub-SbOx NPs) for efficient catalytic applications in FAOR. Impressively, they can achieve the remarkable FAOR specific and mass activities of 28.7 mA cm-2 and 7.2 A mgPt-1, which are 151 and 60 times higher than those of the state-of-the-art commercial Pt/C, respectively. Furthermore, the X-ray photoelectron spectroscopy and X-ray absorption spectroscopy results collectively reveal the optimization of the local coordination environment by the surface sub-monolayer SbOx, along with the electron transfer from Pb and Sb to Pt, driving the predominant dehydrogenation process. The sub-monolayer SbOx on the surface can effectively attenuate the CO generation, largely improving the FAOR performance of PtPb/Pt@sub-SbOx NPs. This work develops a class of high-performance Pt-based anodic catalyst for DFAFC via constructing the unique intermetallic core/sub-monolayer shell structure.
Collapse
Affiliation(s)
- Xinrui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengchao An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weizhen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Lin
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- College of Chemistry, Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | | | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, Li H. Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS NANO 2023. [PMID: 37367960 DOI: 10.1021/acsnano.3c01380] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Controlling the synthesis of metal nanostructures is one approach for catalyst engineering and performance optimization in electrocatalysis. As an emerging class of unconventional electrocatalysts, two-dimensional (2D) metallene electrocatalysts with ultrathin sheet-like morphology have gained ever-growing attention and exhibited superior performance in electrocatalysis owing to their distinctive properties originating from structural anisotropy, rich surface chemistry, and efficient mass diffusion capability. Many significant advances in synthetic methods and electrocatalytic applications for 2D metallenes have been obtained in recent years. Therefore, an in-depth review summarizing the progress in developing 2D metallenes for electrochemical applications is highly needed. Unlike most reported reviews on the 2D metallenes, this review starts by introducing the preparation of 2D metallenes based on the classification of the metals (e.g., noble metals, and non-noble metals) instead of synthetic methods. Some typical strategies for preparing each kind of metal are enumerated in detail. Then, the utilization of 2D metallenes in electrocatalytic applications, especially in the electrocatalytic conversion reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel oxidation reaction, CO2 reduction reaction, and N2 reduction reaction, are comprehensively discussed. Finally, current challenges and opportunities for future research on metallenes in electrochemical energy conversion are proposed.
Collapse
Affiliation(s)
- Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Yanna Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fengyu Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunqing Kang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Jungmok You
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Miharu Eguchi
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
12
|
Hu X, Xiao Z, Wang W, Bu L, An Z, Liu S, Pao CW, Zhan C, Hu Z, Yang Z, Wang Y, Huang X. Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis. J Am Chem Soc 2023. [PMID: 37289521 DOI: 10.1021/jacs.3c00262] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing platinum (Pt)-based formic acid oxidation reaction (FAOR) catalysts with high performance and high selectivity of direct dehydrogenation pathway for direct formic acid fuel cell (DFAFC) is desirable yet challenging. Herein, we report a new class of surface-uneven PtPbBi/PtBi core/shell nanoplates (PtPbBi/PtBi NPs) as the highly active and selective FAOR catalysts, even in the complicated membrane electrode assembly (MEA) medium. They can achieve unprecedented specific and mass activities of 25.1 mA cm-2 and 7.4 A mgPt-1 for FAOR, 156 and 62 times higher than those of commercial Pt/C, respectively, which is the highest for a FAOR catalyst by far. Simultaneously, they show highly weak adsorption of CO and high dehydrogenation pathway selectivity in the FAOR test. More importantly, the PtPbBi/PtBi NPs can reach the power density of 161.5 mW cm-2, along with a stable discharge performance (45.8% decay of power density at 0.4 V for 10 h), demonstrating great potential in a single DFAFC device. The in situ Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) results collectively reveal a local electron interaction between PtPbBi and PtBi. In addition, the high-tolerance PtBi shell can effectively inhibit the production/adsorption of CO, resulting in the complete presence of the dehydrogenation pathway for FAOR. This work demonstrates an efficient Pt-based FAOR catalyst with 100% direct reaction selectivity, which is of great significance for driving the commercialization of DFAFC.
Collapse
Affiliation(s)
- Xinrui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengyi Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weizhen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Zhengchao An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- College of Chemistry, Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | | | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Wei J, Wu F, Sun H, Xia S, Sang X, Li F, Zhang Z, Han S, Niu W. Modulate the metallic Sb state on ultrathin PdSb-based nanosheets for efficient formic acid electrooxidation. J Colloid Interface Sci 2023; 648:473-480. [PMID: 37302230 DOI: 10.1016/j.jcis.2023.05.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Incorporation of oxophilic metals into Pd-based nanostructures has shown great potential in small molecule electrooxidation owing to their superior anti-poisoning capability. However, engineering the electronic structure of oxophilic dopants in Pd-based catalysts remains challenging and their impact on electrooxidation reactions is rarely demonstrated. Herein, we have developed a method for synthesizing PdSb-based nanosheets, enabling the incorporation of the Sb element in a predominantly metallic state despite its high oxophilic nature. Moreover, the Pd90Sb7W3 nanosheet serves as an efficient electrocatalyst for the formic acid oxidation reaction (FAOR), and the underlying promotion mechanism is investigated. Among the as-prepared PdSb-based nanosheets, the Pd90Sb7W3 nanosheet exhibits a remarkable 69.03% metallic state of Sb, surpassing the values observed for the Pd86Sb12W2 (33.01%) and Pd83Sb14W3 (25.41%) nanosheets. X-ray photoelectron spectroscopy (XPS) and CO stripping experiments confirm that the Sb metallic state contributes the synergistic effect of their electronic and oxophilic effect, thus leading to an effective electrooxidation removal of CO and significantly enhanced FAOR electrocatalytic activity (1.47 A mg-1; 2.32 mA cm-1) compared with the oxidated state of Sb. This work highlights the importance of modulating the chemical valence state of oxophilic metals to enhance electrocatalytic performance, offering valuable insights for the design of high-performance electrocatalysts for electrooxidation of small molecules.
Collapse
Affiliation(s)
- Jinping Wei
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Hongda Sun
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Xueqing Sang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| |
Collapse
|
14
|
Guo J, Liu W, Fu X, Jiao S. Wet-chemistry synthesis of two-dimensional Pt- and Pd-based intermetallic electrocatalysts for fuel cells. NANOSCALE 2023; 15:8508-8531. [PMID: 37114369 DOI: 10.1039/d3nr00955f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) noble-metal-based nanomaterials have attracted tremendous attention and have widespread promising applications as a result of their unique physical, chemical, and electronic properties. Especially, 2D Pt- and Pd-based intermetallic nanoplates (IMNPs) and nanosheets (IMNSs) are widely studied for fuel cell (FC)-related reactions, including the cathodic oxygen reduction reaction (ORR) and anodic formic acid, methanol and ethanol oxidation reactions (FAOR, MOR and EOR). Wet-chemistry synthesis is a powerful strategy to prepare metallic nanocrystals with well-controlled dispersity, size, and composition. In this review, a fundamental understanding of the FC-related reactions is firstly elaborated. Subsequently, the current wet-chemistry synthesis pathways for 2D Pt- and Pd-based IMNPs and IMNSs are briefly summarized, as well as their electrocatalytic applications including in the ORR, FAOR, MOR, and EOR. Finally, we provide an overview of the opportunities and current challenges and give our perspectives on the development of high-performance 2D Pt- and Pd-based intermetallic electrocatalysts towards FCs. We hope this review offers timely information on the synthesis of 2D Pt- and Pd-based IMNPs and IMNSs and provides guidance for the efficient synthesis and application of them.
Collapse
Affiliation(s)
- Jingchun Guo
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Wei Liu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Xucheng Fu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Shilong Jiao
- School of Materials, Key Lab for Special Functional Materials of Ministry of Education, Henan University, Jinming Avenue, Kaifeng 475001, China.
| |
Collapse
|
15
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
16
|
Hu Z, Yang N, Feng Y, Xu L, Hu C, Liu H, Tian S, Yang J. Synthesis of unconventional Pd-Se nanoparticles for phase-dependent ethanol electrooxidation. Chem Commun (Camb) 2023; 59:4020-4023. [PMID: 36917447 DOI: 10.1039/d2cc06785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
By tuning the amount of the Se precursors during the synthesis, orthorhombic PdSe2, cubic Pd17Se15, and monoclinic Pd7Se2 nanoparticles are synthesized, which show phase-dependent electrocatalysis for the ethanol oxidation reaction. This work advances the controllable synthesis of transition metal selenides and inspires their applications in electrocatalysis.
Collapse
Affiliation(s)
- Zhenya Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niuwa Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Chaoquan Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211100, Jiangsu, China
| | - Hui Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211100, Jiangsu, China
| | - Shaonan Tian
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211100, Jiangsu, China
| |
Collapse
|
17
|
Kim S, Lee YM. Two-dimensional nanosheets and membranes for their emerging technologies. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2022.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Yi D, Marcelot C, Romana I, Tassé M, Fazzini PF, Peres L, Ratel-Ramond N, Decorse P, Warot-Fonrose B, Viau G, Serp P, Soulantica K. Etching suppression as a means to Pt dendritic ultrathin nanosheets by seeded growth. NANOSCALE 2023; 15:1739-1753. [PMID: 36598381 DOI: 10.1039/d2nr05105b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2D ultrathin metal nanostructures are emerging materials displaying distinct physical and chemical properties compared to their analogues of different dimensionalities. Nanosheets of fcc metals are intriguing, as their crystal structure does not favour a 2D configuration. Thanks to their increased surface-to-volume ratios and the optimal exposure of low-coordinated sites, 2D metal nanostructures can be advantageously exploited in catalysis. Synthesis approaches to ultrathin nanosheets of pure platinum are scarce compared to other noble metals and to Pt-based alloys. Here, we present the selective synthesis of Pt ultrathin nansosheets by a simple seeded-growth method. The most crucial point in our approach is the selective synthesis of Pt seeds comprising planar defects, a main driving force for the 2D growth of metals with fcc structure. Defect engineering is employed here, not in order to disintegrate, but for conserving the defect comprising seeds. This is achieved by in situ elimination of the principal etching agent, chloride, which is present in the PtCl2 precursor. As a result of etching suppression, twinned nuclei, that are selectively formed during the early stage of nucleation, survive and grow to multipods comprising planar defects. Using the twinned multipods as seeds for the subsequent 2D overgrowth of Pt from Pt(acac)2 yields ultrathin dendritic nanosheets, in which the planar defects are conserved. Using phenylacetylene hydrogenation as a model reaction of selective hydrogenation, we compared the performance of Pt nanosheets to that of a commercial Pt/C catalyst. The Pt nanosheets show better stability and much higher selectivity to styrene than the commercial Pt/C catalyst for comparable activity.
Collapse
Affiliation(s)
- Deliang Yi
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Cécile Marcelot
- CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Idaline Romana
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Laurent Peres
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Nicolas Ratel-Ramond
- CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Philippe Decorse
- ITODYS, UMR 7086, CNRS, Université de Paris, F-75013 Paris, France
| | | | - Guillaume Viau
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Philippe Serp
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| |
Collapse
|
19
|
One-pot controllable epitaxial growth of Pd-based heterostructures for enhanced formic acid oxidation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Alkhawaldeh AK. Electrocatalytic Activities of a Platinum Nanostructured Electrode Modified by Gold Adatom toward Methanol and Glycerol Electrooxidation in Acid and Alkaline Media. J Oleo Sci 2023; 72:347-356. [PMID: 36878588 DOI: 10.5650/jos.ess22376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
For practical applications such as fuel cells, it is important to exploit electrocatalysis with high activity for methanol and glycerol oxidation. A platinum nanostructured electrode (PtNPs) is modified by gold adatoms and is created by application of a square wave potential regime to a tantalum surface electrode. In nanostructured platinum, the structure and the surface properties are characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and cyclic voltammetry (CV). In acid and alkaline media, the CV and Chronoamperometric (CA) are studied to investigate the catalytic activity of the PtNPs nanoparticles for the electrooxidation of methanol and glycerol. The prepared nanostructured platinum on a tantalum electrode was allowed to balance an open circuit with a 1.0×10-3 M solution containing an Au ion. Consequently, the proximity of the irreversibly adsorbed Au-adatoms on the already described Pt-nanostructured electrode. In acidic and alkaline solutions, the electrocatalytically activities toward methanol and glycerol oxidation were evaluated and is found to strongly on the surface of the gold-modified PtNPs. The PtNPs modified by Au electrode system used direct methanol fuel cell (DMFC) and direct glycerol fuel cell (DGFC). The DMFC and DGFC are much higher than in acid output in alkaline. Comparison of the i-E curves of nanostructure platinum electrode with that of a platinum nanostructure electrode modified by Au under similar conditions for the letter, the charge under the peak (i-E curve) in the oxidation region was higher. Furthermore, rough chronoamperometric measurements confirmed the results. The results of showed that the electrocatalytic properties of the nanostructured prepared surface were enhanced by the inclusion of gold adatoms with a variable extent of advancement. The current peak (Ip) and the current chronoamperometric (ICA) of glycerol oxidation on the PtNPs electrode modified by Au in acid media (130 mA/cm2, 47 µA/cm2) were higher than those of the bare PtNPs electrode and in alkaline media (171 mA/cm2, 66 µA/cm2). The stronger catalytic behavior in alkaline media of the Au-PtNP electrode indicates its promising use in alkaline direct alcohol cells.
Collapse
|
21
|
Xu B, Liu T, Liang X, Dou W, Geng H, Yu Z, Li Y, Zhang Y, Shao Q, Fan J, Huang X. Pd-Sb Rhombohedra with an Unconventional Rhombohedral Phase as a Trifunctional Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206528. [PMID: 36120846 DOI: 10.1002/adma.202206528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Crystal phase engineering is an important strategy for designing noble-metal-based catalysts with optimized activity and stability. From the thermodynamic point of view, it remains a great challenge to synthesize unconventional phases of noble metals. Here, a new class of Pd-based nanostructure with unconventional rhombohedral Pd20 Sb7 phase is successfully synthesized. Benefiting from the high proportion of the unique exposed Pd20 Sb7 (003) surface, Pd20 Sb7 rhombohedra display much enhanced ethanol oxidation reaction (EOR) and oxygen reduction reaction performance compared with commercial Pd/C. Moreover, Pd20 Sb7 rhombohedra are also demonstrated as an effective air cathode in non-aqueous Li-air batteries with an overpotential of only 0.24 V. Density functional theory calculations reveal that the unique exposed facets of Pd20 Sb7 rhombohedra can not only reduce the excessive adsorption of CH3 CO* to CH3 COOH on Pd for promoting EOR process, but also weaken CO binding and CO poisoning. This work provides a new class of unconventional intermetallic nanomaterials with enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Wenjie Dou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Zhang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Jingmin Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
22
|
Sun B, Wang Z, Yuan ZH, Ding Y, Li FM, Zhao GT, Li DS, Li XF, Chen Y. Ultrathin rhodium nanosheet-gold nanowire nanocomposites for alkaline methanol oxidation reaction. Chem Commun (Camb) 2022; 58:11139-11142. [PMID: 36106578 DOI: 10.1039/d2cc04762d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatically assembled ultrathin rhodium nanosheet-gold nanowire nanocomposites (Rh-Au CNSs) were used as an advanced electrocatalyst for the methanol oxidation reaction, which revealed a mass activity of 355 mA mgRh-1 at 0.607 V potential, much higher than single metal Rh nanosheets (273 mA mgRh-1) and commercial Rh nanoparticles (165 mA mgRh-1).
Collapse
Affiliation(s)
- Bin Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Zhe Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Zi-Han Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yu Ding
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Guang-Tao Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Xi-Fei Li
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
23
|
Chen P, Huang S. Quaternary PdCuNiP Porous Nanosheets with Enhanced Electrochemical Performance in the Ethanol Oxidation Reaction. Inorg Chem 2022; 61:14470-14476. [PMID: 36043986 DOI: 10.1021/acs.inorgchem.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to manipulate metal electrocatalysts with satisfactory performance for the ethanol oxidation reaction (EOR) is promising but still unsatisfactory for practical application in direct ethanol fuel cells. Beyond traditional metal-metal alloys, we herein report a novel metal-nonmetal alloy electrocatalyst that takes advantage of quaternary PdCuNiP alloy composition and the ultrathin/porous nanosheet (NS) structure. The optimized PdCuNiP porous NSs feature more undercoordinated active sites and modified electron/function structures, enabling better antipoisoning ability. Under alkaline conditions, this electrocatalyst shows excellent electrochemical EOR performance with a high EOR activity of 4.05 A mgPd-1 and a low activation energy of 21.2 kJ mol-1, comparable to the state-of-the-art electrocatalysts reported in the literature. Meanwhile, PdCuNiP porous NSs are electrocatalytically active for electrochemical oxidation of other fuels (methanol, glycerol, and glucose), highlighting their great potential for various direct alcohol fuel cells. The findings reported here may put forward some insights into designing new functional electrocatalysts for various fuel cell electrocatalysis and beyond.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Sa Huang
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
24
|
Li L, Xia Y, Zeng M, Fu L. Facet engineering of ultrathin two-dimensional materials. Chem Soc Rev 2022; 51:7327-7343. [PMID: 35924550 DOI: 10.1039/d2cs00067a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrathin two-dimensional (2D) materials exhibit broad application prospects in many fields due to the enhanced specific surface area to volume ratio and quantum confinement effect. Because of the atomic thickness and various orientations, ultrathin 2D materials exposing specific facets have drawn great attention for various applications in catalysis, batteries, optoelectronics, magnetism, epitaxial template for material growth, etc. Though maintaining the atomic thickness of 2D materials while controlling crystal facets is an enormous challenge, breakthroughs are being made. This review provides a comprehensive overview of the recent advances in the facet engineering of 2D materials, ranging from a basic understanding of facets and the corresponding approaches and the significance of facet engineering. We also propose current challenges and forecast future development directions including the establishment of a facet database, the fabrication of new 2D materials, the design of specific substrates, and the introduction of theoretical calculations and in situ characterization techniques. This review can guide researchers to design ultrathin 2D materials with unique and distinct facets and provide an insight into the applications of energy, magnetism, optics, biomedicine, and other fields.
Collapse
Affiliation(s)
- Linyang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yabei Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. .,The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China.
| |
Collapse
|
25
|
Guo J, Jiao S, Ya X, Zheng H, Wang R, Yu J, Wang H, Zhang Z, Liu W, He C, Fu X. Ultrathin Pd‐based Perforated Nanosheets for Fuel Cells Electrocatalysis. ChemElectroChem 2022. [DOI: 10.1002/celc.202200729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jingchun Guo
- West Anhui University Department of Experimental and Practical Teaching Management Yunlu Bridge 237012 Lu'an CHINA
| | - Shilong Jiao
- Henan University School of Materials, Key Lab for Special Functional Materials of Ministry of Education CHINA
| | - Xiuying Ya
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Huiling Zheng
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Ran Wang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Jiao Yu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Huanyu Wang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Zhilin Zhang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Wei Liu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Congxiao He
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Xucheng Fu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| |
Collapse
|
26
|
Lv H, Sun L, Wang Y, Liu S, Liu B. Highly Curved, Quasi-Single-Crystalline Mesoporous Metal Nanoplates Promote CC Bond Cleavage in Ethanol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203612. [PMID: 35640570 DOI: 10.1002/adma.202203612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The ability to manipulate metal nanocrystals with well-defined morphologies and structures is greatly important in material chemistry, catalysis chemistry, nanoscience, and nanotechnology. Although 2D metals serve as interesting platforms, further manipulating them in solution with highly penetrated mesopores and ideal crystallinity remains a huge challenge. Here, an easy yet powerful synthesis strategy for manipulating the mesoporous structure and crystallinity of 2D metals in a controlled manner with cetyltrimethylammonium chloride as the mesopore-forming surfactant and extra iodine-ion as the structure/facet-selective agent is reported. This strategy allows for preparing an unprecedented type of 2D quasi-single-crystalline mesoporous nanoplates (SMPs) with highly curved morphology and controlled metal composition. The products, for example, PdCu SMPs, feature abundant undercoordinated sites, optimized electronic structures, excellent electron/mass transfers, and confined mesopore environments. Curved PdCu SMPs exhibit remarkable electrocatalytic activity of 6.09 A mgPd -1 and stability for ethanol oxidation reaction (EOR) compared with its counterpart catalysts and commercial Pd/C. More importantly, PdCu SMPs are highly selective for EOR electrocatalysis that dramatically promotes C-C bond cleavage with a superior C1 pathway selectivity as high as 72.1%.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
27
|
Yin Z, Liu C, Yi Y, Wu H, Fu X, Yan Y. A label-free electrochemical immunosensor based on PdPtCu@BP bilayer nanosheets for point-of-care kidney injury molecule-1 testing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Xu B, Zhang Y, Li L, Shao Q, Huang X. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214388] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Yuan JW, Zhang MM, Dong XY, Zang SQ. Master key to coinage metal nanoclusters treasure chest: 38-metal clusters. NANOSCALE 2022; 14:1538-1565. [PMID: 35060593 DOI: 10.1039/d1nr07690f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically precise metal nanoclusters with specific chemical compositions have become a popular research topic due to their precise structures, attractive properties, and wide range of applications in various fields. Currently, among more than 100 reported metal nanoclusters with precise formulas, 38-atom coinage metal nanoclusters stand out due to their unique structural diversities, such as face-centered cubic (FCC) and body-centered cubic (BCC) arrangements. Among them, the formation of the metal cores includes vertex-sharing, face-fusion, and FCC cubes fusion. Due to their geometrical features, 38-atom coinage metal nanoclusters exhibit attractive properties, making them an ideal model for exploring structure-property relationships. Therefore, 38-atom coinage metal nanoclusters are a universal key to the treasure trove of nanoclusters, which can open almost all fields and are of great research significance. This paper focuses on the structure of 38-atom coinage metal nanoclusters and reviews the preparation and crystallization methods, excellent properties, and practical applications. Finally, future research prospects and development opportunities are provided.
Collapse
Affiliation(s)
- Jia-Wang Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
30
|
Yuan Z, Zhang G, Zheng Y, Ma Y, Zhang H. Tuning the Shape of Gold‐Silver Nanocrystals by Separately Controlling the Metal‐Atom Concentration in a One‐Pot Synthesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuangdong Yuan
- School of Chemistry Chemical Engineering and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Gongguo Zhang
- School of Chemistry Chemical Engineering and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yiqun Zheng
- School of Chemistry Chemical Engineering and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Haifeng Zhang
- School of Chemistry Chemical Engineering and Materials Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
31
|
Liu X, Yang C, Yang W, Lin J, Zhou X, Li Y. Cu nanoplates with “clean surface”: synthesis and their enhanced biosensors performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Abstract
The present review highlights the synthetic strategies and potential applications of TMNs for organic reactions, environmental remediation, and health-related activities.
Collapse
Affiliation(s)
- Shushay Hagos Gebre
- College of Natural and Computational Science, Department of Chemistry, Jigjiga University, P.O. Box, 1020, Jigjiga, Ethiopia
| |
Collapse
|
33
|
Mehdizadeh Chellehbari Y, Sayyad Amin J, Zendehboudi S. How Does a Microfluidic Platform Tune the Morphological Properties of Polybenzimidazole Nanoparticles? J Phys Chem B 2021; 126:308-326. [PMID: 34958735 DOI: 10.1021/acs.jpcb.1c08192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidic synthesis methods are among the most promising approaches for controlling the size and morphology of polymeric nanoparticles (NPs). In this work, for the first time, atomistic mechanisms involved in morphological changes of polybenzimidazole (PBI) NPs in microfluidic media are investigated. The multiscale molecular dynamic (MD) simulations are validated with the literature modeling and experimental data. A good agreement is obtained between the molecular modeling results and experimental data. The effects of mixing time, solvent type, dopant, and simulation box size at the molecular level are investigated. Mixing time has a positive impact on the morphology of the PBI NPs. Microfluidic technology can control the mixing time well and engineer the morphology of the NPs. In the process of morphological changes, at the optimum time (about 11.5 ms), the attraction energy between the polymer molecules is at the highest level (-37.65 kJ/mol). The size of the polymer NPs is minimal (2.3 nm), and the aspect ratio and entropy are at the lowest level, equal to 1.07 and 11.024 kJ/mol·K, respectively. It was found that the presence of water leads to the precipitation of polymeric NPs owing to the dominance of hydrophobic forces. Both dimethylacetamide (DMA) and phosphoric acid (PA) improve the control of the size and morphology of NPs. However, the addition of PA has a greater impact; PA acts as a cross-linker, making PBI NPs finer and more spherical. In addition, MD simulation reveals that PA increases the proton diffusion coefficient in PBI and enhances its efficiency in fuel cells. This study paves a new efficient way for morphological engineering of polymeric NPs using microfluidic technology.
Collapse
Affiliation(s)
| | - Javad Sayyad Amin
- Department of Chemical Engineering, University of Guilan, Rasht IR 41335, Iran
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
34
|
Wang Q, Tian H, Yu Y, Li J, Rao P, Li R, Du Y, Jia C, Luo J, Deng P, Shen Y, Tian X. Synthesis and Design of a Highly Stable Platinum Nickel Electrocatalyst for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52681-52687. [PMID: 34705413 DOI: 10.1021/acsami.1c16375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exploring effective, stable, and affordable oxygen reduction reaction (ORR) catalysts is very significant for the practical application of proton-exchange membrane fuel cells. In this work, a facile and expandable method is developed to prepare ultrathin PtNi nanowires (NWs) with various Pt/Ni contents, and the ORR performance of the synthesized samples is thoroughly investigated. Pt3.2Ni NWs show the best ORR performance among the studied samples and, notably, exhibit much better ORR activity and stability than those of the Pt/C catalyst even after a 300,000-continuous cycling test. This work confirms that the initial Pt/Ni ratio plays a critical role in the ORR activity and stability of PtNi NWs, and the structure of the PtNi NWs can be well retained after the durability test. Additionally, the structure and performance of Pt3.2Ni NWs are investigated in detail during various cycles, and the performance decay is attributed to the dealloying of Ni and the corrosion of the one-dimensional structure after a prolonged durability test. This work provides a desirable method for rationally synthesizing a highly efficient ORR electrocatalyst with remarkable stability.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Hao Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yanhui Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Peng Rao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Ruisong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yanlian Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Chunman Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Junming Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Peilin Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
35
|
Yuan D, Dou Y, Wu Z, Tian Y, Ye KH, Lin Z, Dou SX, Zhang S. Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chem Rev 2021; 122:957-999. [PMID: 34709781 DOI: 10.1021/acs.chemrev.1c00636] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Ding Yuan
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Shandong Institute of Advanced Technology, Jinan 250100, China
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhui Tian
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, Henan 450002, China
| | - Kai-Hang Ye
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong 2500, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
36
|
Lv F, Huang B, Feng J, Zhang W, Wang K, Li N, Zhou J, Zhou P, Yang W, Du Y, Su D, Guo S. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. Natl Sci Rev 2021; 8:nwab019. [PMID: 34691734 PMCID: PMC8433090 DOI: 10.1093/nsr/nwab019] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023] Open
Abstract
The multi-metallene with an ultrahigh surface area has great potential in precise tuning of surface heterogeneous d-electronic correlation by surface strain effect for the distinctive surface electronic structure, which is a brand new class of promising 2D electrocatalyst for sustainable energy device application. However, achieving such an atomically thin multi-metallene still presents a great challenge. Herein, we present a new synthetic method for an atomic-level palladium-iridium (PdIr) bimetallene with an average thickness of only ∼1.0 nm for achieving superior catalysis in the hydrogen evolution reaction (HER) and the formic acid oxidation reaction (FAOR). The curved PdIr bimetallene presents a top-ranked high electrochemical active area of 127.5 ± 10.8 m2 gPd+Ir−1 in the reported noble alloy materials, and exhibits a very low overpotential, ultrahigh activity and improved stability for HER and FAOR. DFT calculation reveals that the PdIr bimetallene herein has a unique lattice tangential strain, which can induce surface distortion while concurrently creating a variety of concave-convex featured micro-active regions formed by variously coordinated Pd sites agglomeration. Such a strong strain effect correlates the abnormal on-site active 4d10-t2g-orbital Coulomb correlation potential and directly elevates orbital-electronegativity exposure within these active regions, resulting in a preeminent barrier-free energetic path for significant enhancement of FAOR and HER catalytic performance.
Collapse
Affiliation(s)
- Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Jianrui Feng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Weiyu Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Frontier Institute of Science and Technology jointly with College of Science, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jinhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Peng Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Wenxiu Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Dong Su
- Center for Functional Nanomaterials Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Zhang J, Wu L, Xu L, Sun D, Sun H, Tang Y. Recent advances in phosphorus containing noble metal electrocatalysts for direct liquid fuel cells. NANOSCALE 2021; 13:16052-16069. [PMID: 34549765 DOI: 10.1039/d1nr04218a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct liquid fuel cells (DLFCs) are considered as satisfactory alternatives to traditional fossil fuels owing to their unique advantages, e.g. environmental friendliness and easy storage. Noble metal catalysts are widely used to improve the efficiency of DLFCs. However, the high cost, low utilization and poor stability of noble metals restricted their practical applications. Therefore, it is of great significance to explore cost-effective electrocatalysts and further improve their electrocatalytic performance. Reducing the content of noble metals by adding low-priced phosphorus (P) has been considered as an effective strategy, which is able to enhance their electrocatalytic activity and anti-poisoning ability through effectively changing the electronic density of active sites. In the past few years, tremendous P containing catalysts have been synthesized and utilized in DLFCs. In this review, we summarize the fundamentals of electrochemical reactions and present recent progress in P containing noble metal catalysts for DLFCs, including the discussion of their shape, composition and the relationship between P and active sites. Finally, the challenges and some potential directions in this field are pointed out.
Collapse
Affiliation(s)
- Jiachen Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Li Wu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
38
|
Zhao F, Zheng L, Yuan Q, Yang X, Zhang Q, Xu H, Guo Y, Yang S, Zhou Z, Gu L, Wang X. Ultrathin PdAuBiTe Nanosheets as High-Performance Oxygen Reduction Catalysts for a Direct Methanol Fuel Cell Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103383. [PMID: 34468056 DOI: 10.1002/adma.202103383] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Ultrathin 2D metal nanostructures have sparked a lot of research interest because of their improved electrocatalytic properties for fuel cells. So far, no effective technique for preparing ultrathin 2D Pd-based metal nanostructures with more than three compositions has been published. Herein, a new visible-light-induced template technique for producing PdAuBiTe alloyed 2D ultrathin nanosheets is developed. The mass activity of the PdAuBiTe nanosheets against the oxygen reduction reaction (ORR) is 2.48 A mgPd -1 , which is 27.5/17.7 times that of industrial Pd/C/Pt/C, respectively. After 10 000 potential cyclings, there is no decrease in ORR activity. The PdAuBiTe nanosheets exhibit high methanol tolerance and in situ anti-CO poisoning properties. The PdAuBiTe nanosheets, as cathode electrocatalysts in direct methanol fuel cells, can thus give significant improvement in terms of power density and durability. In O2 /air, the power density can be increased to 235.7/173.5 mW cm-2 , higher than that reported in previous work, and which is 2.32/3.59 times higher than Pt/C.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Qinghua Zhang
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Han Xu
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Yuanlong Guo
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Song Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lin Gu
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
39
|
Kim Y, Lee YW, Lee S, Gong J, Lee HS, Han SW. One-Pot Synthesis of Ternary Alloy Hollow Nanostructures with Controlled Morphologies for Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45538-45546. [PMID: 34530610 DOI: 10.1021/acsami.1c13171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rational design and synthesis of multimetallic hollow nanostructures (HNSs) have been attracting great attention due to their structural and compositional advantages for application in electrocatalysis. Herein, the one-pot synthesis of Pd-Pt-Ag ternary alloy HNSs with controllable morphologies through a self-templating approach without any pre-synthesized templates is reported. Simultaneous reduction of multiple metal precursors by ascorbic acid in the presence of cetyltrimethylammonium chloride (CTAC) yielded initially metastable Pd-Ag nanocrystals, which can act as a self-template, and subsequent galvanic replacement and reduction led to the formation of final Pd-Pt-Ag HNSs. The size and hollowness (the ratio of inner cavity diameter to outer diameter) of the HNSs could be tuned through control over the concentration of CTAC. This can be attributed to the manipulated reduction kinetics of multiple metal precursors with the change in the CTAC concentration. The prepared Pd-Pt-Ag HNSs exhibited improved catalytic performance for ethanol electro-oxidation due to their large active surface areas and ternary alloy composition.
Collapse
Affiliation(s)
- Yonghyeon Kim
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Young Wook Lee
- Department of Education Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Seunghoon Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
- Department of Chemistry, Dong-A University, Busan 49315, Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
40
|
Tian L, Li Z, Song M, Li J. Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials. NANOSCALE 2021; 13:12088-12101. [PMID: 34236371 DOI: 10.1039/d1nr02232f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) nanostructures have enabled noble-metal-based nanomaterials to be promising electrocatalysts toward overall water splitting due to their inherent structural advantages, including a high specific surface active area, numerous low-coordinated atoms, and a high density of defects and edges. Moreover, it is also disclosed that the electronic effect and strain effect within 2D nanostructures also benefit the further promotion of the electrocatalytic performance. In this review, we have focused on the recent progress in the fabrication of advanced electrocatalysts based on 2D noble-metal-based nanomaterials toward water splitting electrocatalysis. First, fundamental descriptions about water-splitting mechanisms, some promising engineering strategies, and major challenges in electrochemical water splitting are given. Then, the structural merits of 2D nanostructures for water splitting electrocatalysis are also highlighted, including abundant surface active sites, lattice distortion, abundant surface defects, electronic effects, and strain effects. Additionally, some representative water-splitting electrocatalysts have been discussed in detail to highlight the superiorities of 2D noble-metal-based nanomaterials for electrochemical water splitting. Finally, the underlying challenges and future opportunities for the fabrication of more advanced electrocatalysts for water splitting are also highlighted. We hope that this review article provides guidance for the fabrication of more efficient electrocatalysts for boosting industrial hydrogen production via water splitting.
Collapse
Affiliation(s)
- Lin Tian
- C School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | | | | | | |
Collapse
|
41
|
Sugimoto W, Takimoto D. Platinum Group Metal-based Nanosheets: Synthesis and Application towards Electrochemical Energy Storage and Conversion. CHEM LETT 2021. [DOI: 10.1246/cl.210087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wataru Sugimoto
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Daisuke Takimoto
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
42
|
Zhang MK, Chen W, Wei Z, Xu ML, He Z, Cai J, Chen YX, Santos E. Mechanistic Implication of the pH Effect and H/D Kinetic Isotope Effect on HCOOH/HCOO – Oxidation at Pt Electrodes: A Study by Computer Simulation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meng-Ke Zhang
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Wei
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mian-Le Xu
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - ZhengDa He
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Xia Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Elizabeth Santos
- Institute of Theoretical Chemistry, Ulm University, Ulm 89069, Germany
| |
Collapse
|
43
|
Recent Advances on Properties and Utility of Nanomaterials Generated from Industrial and Biological Activities. CRYSTALS 2021. [DOI: 10.3390/cryst11060634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today is the era of nanoscience and nanotechnology, which find applications in the field of medicine, electronics, and environmental remediation. Even though nanotechnology is in its emerging phase, it continues to provide solutions to numerous challenges. Nanotechnology and nanoparticles are found to be very effective because of their unique chemical and physical properties and high surface area, but their high cost is one of the major hurdles to its wider application. So, the synthesis of nanomaterials, especially 2D nanomaterials from industrial, agricultural, and other biological activities, could provide a cost-effective technique. The nanomaterials synthesized from such waste not only minimize pollution, but also provide an eco-friendly approach towards the utilization of the waste. In the present review work, emphasis has been given to the types of nanomaterials, different methods for the synthesis of 2D nanomaterials from the waste generated from industries, agriculture, and their application in electronics, medicine, and catalysis.
Collapse
|
44
|
Wang Y, Lv H, Sun L, Guo X, Xu D, Liu B. Ultrathin and Wavy PdB Alloy Nanowires with Controlled Surface Defects for Enhanced Ethanol Oxidation Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17599-17607. [PMID: 33843184 DOI: 10.1021/acsami.1c02039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering crystalline structures/defects and elemental compositions is synthetically critical to optimize surface features of noble metal nanocrystals and thus improve their catalytic performances in various reactions. In this manuscript, we report a facile one-step aqueous synthesis of one-dimensional (1D) noble metal-metalloid alloy nanowires (NWs) with an ultrathin and wavy morphology, controlled crystalline defects, and binary PdB compositions as a highly efficient catalyst toward the electrochemical ethanol oxidation reaction (EOR). We show that the utilization of hexadecylpyridinium chloride as functional surfactant is of great importance to confine in-the-columnar epitaxial nucleation of anisotropic ultrathin PdB NWs, while the attachment growth precisely controls their surface crystalline defects with a wavy morphology. Meanwhile, this strategy is synthetically universal and can be readily extended to engineer an ultrathin wavy morphology and crystalline defect of ternary PdMB (M = Cu and Pt) alloy NWs. Owing to multiple structural and compositional merits, resultant PdB alloy NWs synergistically expose more electrocatalytically active sites and also kinetically accelerate the removal of CO-related poisons, remarkably improving electrocatalytic EOR activity and stability compared to their counterpart catalysts. Besides, wavy PdB alloy NWs are also electrochemically more active for electrocatalytic oxidation of other alcohols (methanol, glycerol, and glucose). The findings reported here thus shed a bright light on rational design of the high-performance metal alloy catalysts for their potential applications in fine chemical synthesis, fuel cells, and beyond.
Collapse
Affiliation(s)
- Yaru Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hao Lv
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lizhi Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuwen Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
45
|
Han A, Zhang Z, Yang J, Wang D, Li Y. Carbon-Supported Single-Atom Catalysts for Formic Acid Oxidation and Oxygen Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004500. [PMID: 33464722 DOI: 10.1002/smll.202004500] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/29/2020] [Indexed: 06/12/2023]
Abstract
The commercialization of fuel cells, especially for direct formic acid fuel cells (DFAFCs) and proton-exchange membrane fuel cells (PEMFCs), is significantly restrained by the high cost, poor stability, and sluggish kinetics of platinum group metals (PGM) catalysts for both the anodic formic acid oxidation reaction (FAOR) and the cathodic oxygen reduction reaction (ORR). Currently, it has confronted with challenges, including exploring highly active, cost-effective, and stable catalysts to replace PGM for DFAFCs and PEMFCs. Recently, the increasing investigation has been focused on the single-atom catalysts (SACs) to enhance the catalytic performance owing to the maximum atom utilization and highly exposed active sites. The aim of this review is to present the recent research activities on carbon supported SACs. At the beginning of the review, metal-based SACs supported on different carbon supports, and the typical characterization methods are introduced. Subsequently, recent advances in metal-based SACs for FAOR and ORR catalysis are scientifically summarized. Particularly, some representative metal-based SACs for ORR activity are further exemplified with a deeper understanding of structure-activity relationships. Finally, the challenges and opportunities of SACs are prospected, such as the mechanism understanding and commercial applications.
Collapse
Affiliation(s)
- Ali Han
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
Wang N, Cao P, Sun S, Ma H, Lin M. Hollow Multiple Noble Metallic Nanoalloys by Mercury-Assisted Galvanic Replacement Reaction for Hydrogen Evolution. Inorg Chem 2021; 60:3471-3478. [PMID: 33591166 DOI: 10.1021/acs.inorgchem.1c00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hollow multimetallic noble nanoalloys with high surface area/volume ratio, abundant active sites, and relatively effective catalytic activity have attracted considerable research interest. Traditional noble nanoalloys fabricated by hydro-/solvothermal methods usually involve harsh synthetic conditions such as high temperatures and intricate processing. We proposed a simple and mild strategy to synthesize platinum- and palladium-decorated hollow gold-based nanoalloys by the galvanic replacement reaction (GRR) at room temperature using hollow gold nanoparticles as templates and mercury as an intermediate. The hollow gold nanoparticles were essential for increasing the number of surface-active sites of the obtained multimetallic nanoalloys, and the introduction of mercury can eliminate the influence of the electrochemical potential of Pt/Pd with Au in the GRRs, increase alloying degrees, and maintain the nanoalloys that exhibit the hollow nanostructures. The structural characterizations of the hollow nanoalloys were studied by means of high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. On the basis of the electrochemical catalytic measurements, the platinum-exposed nanoalloys were found to have excellent electrocatalytic activities. Especially in the presence of palladium, owing to the synergistic effect, the quaternary AuHgPdPt hollow nanoalloy displayed a low overpotential of 38 mV at 10 mA cm-2 with a small Tafel slope of 56.23 mV dec-1 for the alkaline hydrogen evolution reaction. In addition, this approach not only expands the application range of the galvanic replacement reaction but also provides new ideas for the preparation of multialloys and even high-entropy alloys at room temperature.
Collapse
Affiliation(s)
- Nan Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Pengfei Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shengjun Sun
- Shandong Provincial Key Laboratory of Oral Biomedicine, College of Stomatology, Shandong University, Jinan 250021, China
| | - Houyi Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Meng Lin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
47
|
Wen X, Yin S, Yin H, Ding Y. A displacement dealloying route to dilute nanoporous PtAu alloys for highly active formic acid electro-oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Xu H, Shang H, Wang C, Du Y. Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005092. [PMID: 33448126 DOI: 10.1002/smll.202005092] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Pd- and Pd-based catalysts have emerged as potential alternatives to Pt- and Pt-based catalysts for numerous electrocatalytic reactions, particularly fuel cell-related reactions, including the anodic fuel oxidation reaction (FOR) and cathodic oxygen reduction reaction (ORR). The creation of Pd- and Pd-based architectures with large surface areas, numerous low-coordinated atoms, and high density of defects and edges is the most promising strategy for improving the electrocatalytic performance of fuel cells. Recently, 2D Pd-based nanomaterials with single or few atom thickness have attracted increasing interest as potential candidates for both the ORR and FOR, owing to their remarkable advantages, including high intrinsic activity, high electron mobility, and straightforward surface functionalization. In this review, the recent advances in 2D Pd-based nanomaterials for the FOR and ORR are summarized. A fundamental understanding of the FOR and ORR is elaborated. Subsequently, the advantages and latest advances in 2D Pd-based nanomaterials for the FOR and ORR are scientifically and systematically summarized. A systematic discussion of the synthesis methods is also included which should guide researchers toward more efficient 2D Pd-based electrocatalysts. Lastly, the future outlook and trends in the development of 2D Pd-based nanomaterials toward fuel cell development are also presented.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Shang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Cheng Wang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
49
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
50
|
Lv H, Sun L, Xu D, Liu B. Ternary metal-metalloid-nonmetal alloy nanowires: a novel electrocatalyst for highly efficient ethanol oxidation electrocatalysis. Sci Bull (Beijing) 2020; 65:1823-1831. [PMID: 36659122 DOI: 10.1016/j.scib.2020.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/21/2023]
Abstract
We report rational design and syntheses of ternary noble metal-metalloid-nonmetal alloy nanowires (NWs) as a novel electrocatalyst for electrochemical ethanol oxidation reaction (EOR). This novel electrocatalyst is formed in an aqueous solution via anisotropic nucleation and growth of ternary PdBP alloy NWs along assembled cylinder template of Plurolic F127 on a nitrogen-functionalized graphene support (denoted as PdBP NWs@N-G). We find that uniformly alloying B and P intrinsically modulates the electronic states of Pd catalyst and also introduces new functions into the catalyst, while NW structure supported on the N-G exposes more electrocatalytic active sites and accelerates electron/mass transfers. Such add-in synergies of PdBP NWs@N-G kinetically facilitate the removal and/or further oxidation of CO-based poisoning intermediates, thus remarkably enhancing the electrocatalytic EOR performance. They exhibit a high mass activity of 4.15 A mgPd-1 and superior cycling and chronoamperometric stability for electrocatalytic EOR, much better than previously reported monometallic Pd-based nanocatalysts. More interestingly, this design strategy can be easily extended to develop more sophisticated NWs catalysts with more compositions (for example quaternary PdCuBP NWs@N-G) that further tunes the electronic and bifuntional effects for various desired catalysis and electrocatalysis.
Collapse
Affiliation(s)
- Hao Lv
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lizhi Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|