1
|
Ádám AA, Nagy SB, Kukovecz Á, Kónya Z, Sipos P, Varga G. Nickel-based perovskite-catalysed direct phenol-to-aniline liquid-phase transformations. Chem Commun (Camb) 2024; 60:10520-10523. [PMID: 39228353 DOI: 10.1039/d4cc03638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Liquid phase direct amination of phenols to primary anilines with hydrazine was achieved using commercial NiLa-perovskite catalysts as bifunctional Lewis acid/redox-active catalysts without adding any external hydride sources. The amination strategy took place efficiently in the absence of any amount of reducing gasses (H2/NH3) and noble metals under mild conditions.
Collapse
Affiliation(s)
- Anna Adél Ádám
- Department of Molecular and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary
| | - Sándor Balázs Nagy
- Department of Molecular and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary.
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary.
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Pál Sipos
- Department of Molecular and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary
| | - Gábor Varga
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary.
| |
Collapse
|
2
|
Luan S, Wu W, Zheng B, Wu Y, Dong M, Shen X, Wang T, Deng Z, Zhang B, Chen B, Xing X, Wu H, Liu H, Han B. Atomically dispersed cobalt catalysts for tandem synthesis of primary benzylamines from oxidized β-O-4 segments. Chem Sci 2024; 15:10954-10962. [PMID: 39027282 PMCID: PMC11253118 DOI: 10.1039/d4sc01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
This work presents an innovative approach focusing on fine-tuning the coordination environment of atomically dispersed cobalt catalysts for tandem synthesis of primary benzylamines from oxidized lignin model compounds. By meticulously regulating the Co-N coordination environment, the activity of these catalysts in the hydrogenolysis and reductive amination reactions was effectively controlled. Notably, our study demonstrates that, in contrast to cobalt nanoparticle catalysts, atomically dispersed cobalt catalysts exhibit precise control of the sequence of hydrogenolysis and reductive amination reactions. Particularly, the CoN3 catalyst with a triple Co-N coordination number achieved a remarkable 94% yield in the synthesis of primary benzylamine. To our knowledge, there is no previous documentation of the synthesis of primary benzylamines from lignin dimer model compounds. Our study highlights a promising one-pot route for sustainable production of nitrogen-containing aromatic chemicals from lignin.
Collapse
Affiliation(s)
- Sen Luan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Bingxiao Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Functional Polymer Materials R&D and Engineering Application Technology Innovation Center of Hebei, XingTai University Xingtai Hebei 050041 China
| | - Yuxuan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaojun Shen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
| | - Tianjiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zijie Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
3
|
Castillo-Garcia AA, Kappe CO, Cantillo D, Barta K. Aniline Derivatives from Lignin under Mild Conditions Enabled by Electrochemistry. CHEMSUSCHEM 2024; 17:e202301374. [PMID: 37988183 DOI: 10.1002/cssc.202301374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
The development of environmentally friendly methods for the valorization of important phenolic platform chemicals originating directly from lignin-first depolymerization into value-added N-chemicals, such as aniline derivatives, is of high industrial interest. In this work, we tackle this challenging transformation by the judicious combination of electrochemical conversion and chemical functionalization steps. In the first step, lignin-derived para-substituted guaiacols and syringols undergo an atom-efficient, room-temperature anodic oxidation using methanol both as solvent and reagent towards the formation of the corresponding cyclohexadienone derivatives, which are subsequently converted to synthetically challenging ortho-methoxy substituted anilines by reaction with ethyl glycinate hydrochloride under mild conditions. The developed method was applied to crude lignin depolymerization bio-oils, derived from reductive catalytic fractionation (RCF) mediated either by copper-doped porous metal oxide (Cu20 PMO) or Ru/C, allowing the selective production of 4-propanol-2-methoxyaniline (1Gb) and 4-propyl-2-methoxyaniline (2Gb), respectively, from pine lignocellulose. Finally, the application of 2Gb was further studied in the synthesis of carbazole 2Gc, a lignin-derived analogue of biologically active alkaloid murrayafoline A.
Collapse
Affiliation(s)
- Antonio A Castillo-Garcia
- Institute of Chemistry, University of Graz, Heinchstrasse 28, A-8010, Graz, Austria
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Groningen, The Netherlands
| | - Christian Oliver Kappe
- Institute of Chemistry, University of Graz, Heinchstrasse 28, A-8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010, Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, Heinchstrasse 28, A-8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010, Graz, Austria
| | - Katalin Barta
- Institute of Chemistry, University of Graz, Heinchstrasse 28, A-8010, Graz, Austria
| |
Collapse
|
4
|
Li H, Yatabe T, Takayama S, Yamaguchi K. Heterogeneously Catalyzed Selective Acceptorless Dehydrogenative Aromatization to Primary Anilines from Ammonia via Concerted Catalysis and Adsorption Control. JACS AU 2023; 3:1376-1384. [PMID: 37234130 PMCID: PMC10207093 DOI: 10.1021/jacsau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Although catalytic dehydrogenative aromatization from cyclohexanones and NH3 is an attractive synthetic method for primary anilines, using a hydrogen acceptor was indispensable to achieve satisfactory levels of selectivity in liquid-phase organic synthetic systems without photoirradiation. In this study, we developed a highly selective synthesis of primary anilines from cyclohexanones and NH3 via efficient acceptorless dehydrogenative aromatization heterogeneously catalyzed by an Mg(OH)2-supported Pd nanoparticle catalyst in which Mg(OH)2 species are also deposited on the Pd surface. The basic sites of the Mg(OH)2 support effectively accelerate the acceptorless dehydrogenative aromatization via concerted catalysis, suppressing the formation of secondary amine byproducts. In addition, the deposition of Mg(OH)2 species inhibits the adsorption of cyclohexanones on the Pd nanoparticles to suppress phenol formation, achieving the desired primary anilines with high selectivity.
Collapse
Affiliation(s)
- Hui Li
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science
and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takayama
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Ortega M, Manrique R, Jiménez R, Parreño M, Domine ME, Arteaga-Pérez LE. Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters. Catalysts 2023. [DOI: 10.3390/catal13040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The production of renewable chemicals using lignocellulosic biomass has gained significant attention in green chemistry. Among biomass-derived chemicals, secondary amines have emerged as promising intermediates for synthetic applications. Here, we report a systematic study on the reductive amination of phenolics with cyclohexylamine using Pd/C and Rh/C as catalysts. The catalytic tests were performed in batch reactors under different reaction conditions (various: amine concentration (0.1–0.4 mol/L), hydrogen pressure (0–2.5 bar), temperature (80–160 °C), and substituted phenols (phenol, o-cresol, p-cresol, and methoxyphenol)) and using tert-amyl alcohol as a solvent. The experimental observations were consistent with a multi-step mechanism, where hydrogenation of phenol to cyclohexanone is followed by condensation of the ketone with cyclohexylamine to form an imine, which is finally hydrogenated to produce secondary amines. In addition, there was evidence of parallel self-condensation of the cyclohexylamine. The study also supported a limited dehydrogenation capacity of Rh/C, unlike Pd/C, which increases this capacity at higher temperatures generating a higher yield of cyclohexylaniline (up to 15%). The study of the alkylated phenols demonstrated that the nature and propensity of hydrogenation of the phenolic controls their amination. Kinetic analysis revealed reaction orders between 0.4 and 0.7 for H2, indicating its dissociative adsorption. Meanwhile, phenol’s order (between 1–1.8) suggests a single participation of this compound in the hydrogenation step. The order of 0.4 for cyclohexylamine suggests its participation as a surface-abundant species. The apparent activation energies derived from a power law approximation were of 37 kJ/mol and 10 kJ/mol on Pd/C and Rh/C, respectively.
Collapse
|
6
|
Juma JO, Adongo JO, Kibet JK. Ferricyanide-catalyzed amination of phenol: a near-infrared spectroscopic and kinetic study. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Ortega M, Garrido-Lara BL, Manrique R, Arteaga-Pérez LE. Dataset on the reductive amination of phenolics with cyclohexylamine over Rh/C and Pd/C: Catalysts characterization and reaction performance. Data Brief 2022; 45:108620. [DOI: 10.1016/j.dib.2022.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022] Open
|
8
|
Wagener T, Pierau M, Heusler A, Glorius F. Synthesis of Saturated N-Heterocycles via a Catalytic Hydrogenation Cascade. Adv Synth Catal 2022; 364:3366-3371. [PMID: 36589139 PMCID: PMC9796080 DOI: 10.1002/adsc.202200601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/04/2023]
Abstract
Saturated N-heterocycles are prominent motifs found in various natural products and pharmaceuticals. Despite the increasing interest in this class of compounds, the synthesis of saturated bicyclic azacycles requires tedious multi-step syntheses. Herein, we present a one-pot protocol for the synthesis of octahydroindoles, decahydroquinolines, and octahydroindolizines through a cascade reaction.
Collapse
Affiliation(s)
- Tobias Wagener
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Marco Pierau
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Arne Heusler
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Frank Glorius
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| |
Collapse
|
9
|
CuO/CaO as a solid reducing reagent for nitroarenes: combined effect of oxygen vacancies and surface basicity. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Valentini F, Di Erasmo B, Ciancuti C, Rossi S, Maramai S, Taddei M, Vaccaro L. Macroreticular POLITAG-Pd(0) for the waste minimized hydrogenation/reductive amination of phenols using formic acid as hydrogen source. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Direct Amination of Benzene with Molecular Nitrogen Enabled by Plasma‐Liquid Interactions. Angew Chem Int Ed Engl 2022; 61:e202203680. [DOI: 10.1002/anie.202203680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/07/2022]
|
12
|
Xu X, Zhao X, Tang J, Duan Y, Tian Y. Direct Amination of Benzene with Molecular Nitrogen Enabled by Plasma‐Liquid Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710027 China
| | - Xuyang Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710027 China
| | - Jie Tang
- State Key Laboratory of Transient Optics and Photonics Xi'an Institute of Optics and Precision Mechanics of CAS Xi'an Shaanxi 710119 China
| | - Yixiang Duan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710027 China
| | - Yong‐Hui Tian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710027 China
| |
Collapse
|
13
|
Ortega M, Gómez D, Manrique R, Reyes G, García-Sánchez JT, Baldovino Medrano VG, Jiménez R, Arteaga-Pérez LE. Reductive amination of phenol over Pd-based catalysts: elucidating the role of the support and metal nanoparticle size. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pd-catalyzed reductive amination of phenol is sensitive to the support's nature, and to the atoms' coordination in palladium clusters.
Collapse
Affiliation(s)
- Maray Ortega
- Laboratory of Thermal and Catalytic Processes (LPTC), Wood Engineering Department, Faculty of Engineering, Universidad del Bio-Bio, Concepción, Chile
| | - Daviel Gómez
- Carbon and Catalysis Laboratory (CarboCat), Department of Chemical Engineering, Universidad de Concepción, Concepción, Chile
| | - Raydel Manrique
- Laboratory of Thermal and Catalytic Processes (LPTC), Wood Engineering Department, Faculty of Engineering, Universidad del Bio-Bio, Concepción, Chile
| | - Guillermo Reyes
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | | | - Victor Gabriel Baldovino Medrano
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Colombia
- Laboratorio Central de Ciencia de Superficies (SurfLab), Universidad Industrial de Santander, Colombia
| | - Romel Jiménez
- Carbon and Catalysis Laboratory (CarboCat), Department of Chemical Engineering, Universidad de Concepción, Concepción, Chile
| | - Luis E. Arteaga-Pérez
- Laboratory of Thermal and Catalytic Processes (LPTC), Wood Engineering Department, Faculty of Engineering, Universidad del Bio-Bio, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Coronel, Chile
| |
Collapse
|
14
|
Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01827b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we discuss the state-of-the-art in arene C–N coupling through C–H activation and to what extent it complies with the principles of green chemistry, with a focus on heterogeneously catalysed systems.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Mickaël Henrion
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Robin Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| |
Collapse
|
15
|
Arteaga‐Pérez LE, Manrique R, Ortega M, Castillo‐Puchi F, Fraile JE, Jiménez R. Elucidating the Role of Rh/C on the Pathways and Kinetics of Ketone‐to‐Secondary Amines Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luis E. Arteaga‐Pérez
- Laboratory of Thermal and Catalytic Processes (LPTC-UBB) Wood Engineering Department Facultad de Ingeniería University of Bio-Bio Av. Collao 1202 4030000 Concepción Chile
| | - Raydel Manrique
- Laboratory of Thermal and Catalytic Processes (LPTC-UBB) Wood Engineering Department Facultad de Ingeniería University of Bio-Bio Av. Collao 1202 4030000 Concepción Chile
| | - Maray Ortega
- Laboratory of Thermal and Catalytic Processes (LPTC-UBB) Wood Engineering Department Facultad de Ingeniería University of Bio-Bio Av. Collao 1202 4030000 Concepción Chile
| | - Francisca Castillo‐Puchi
- Laboratory of Thermal and Catalytic Processes (LPTC-UBB) Wood Engineering Department Facultad de Ingeniería University of Bio-Bio Av. Collao 1202 4030000 Concepción Chile
| | - Juan E. Fraile
- Laboratory of Thermal and Catalytic Processes (LPTC-UBB) Wood Engineering Department Facultad de Ingeniería University of Bio-Bio Av. Collao 1202 4030000 Concepción Chile
| | - Romel Jiménez
- Carbon and Catalysis Laboratory (CarboCat) Department of Chemical Engineering Universidad de Concepción Av. Victor Lamas s/n Edificio Gustavo Pizarro 4030000 Concepción Chile
| |
Collapse
|
16
|
Rana S, Varadwaj GBB, Jonnalagadda SB. Manganese oxide supported partially reduced graphene oxide as a highly active and durable catalyst for the amination of benzene. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Techno-economic analysis of aniline production via amination of phenol. Heliyon 2021; 6:e05778. [PMID: 33385086 PMCID: PMC7772548 DOI: 10.1016/j.heliyon.2020.e05778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
The purpose of this research is to demonstrate through a techno-economic assessment that aniline can be industrially produced using a profitable and inherently safer process than the ones currently employed. The aniline production process was designed using process simulation software. From this, the mass and energy balances were determined, the equipment sizing was performed and the net present value (NPV) was calculated to be USD 93.5 million. Additionally, a heat integration analysis was carried out in order to improve process profitability, obtaining a new NPV of USD 97.5 million. The economic sensitivity analysis showed that the process could withstand fixed capital investment changes of up to +89%, weighted average cost of capital changes between 16–24% and a decrease in cyclohexylamine demand of up to 44%. The conceptual design is still profitable when aniline price is varied in a range of 1224–1840 $/t and phenol cost in a range of 815–1178 $/t.
Collapse
|
18
|
Kim K, Kang DW, Choi Y, Kim W, Lee H, Lee JW. Improved H 2 utilization by Pd doping in cobalt catalysts for reductive amination of polypropylene glycol. RSC Adv 2020; 10:45159-45169. [PMID: 35516265 PMCID: PMC9058643 DOI: 10.1039/d0ra10033a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Cobalt based catalysts having enhanced H2 dissociation and desorption were synthesized by inserting a trace amount of palladium. These catalysts were used for the reductive amination of polypropylene glycol (PPG) to polyetheramine (PEA). The catalytic activity toward PEA was significantly increased by incorporating an extremely low content of palladium (around 0.01 wt%) into cobalt based catalysts. The Pd inserted cobalt catalysts promoted reduction of cobalt oxide to cobalt metal and inhibited formation of cobalt nitride in the reductive amination. The Pd inserted cobalt catalysts not only enhanced hydrogen dissociation but also accelerated hydrogen desorption by increasing the electron density of cobalt through interaction between cobalt and palladium. These play a critical role in reducing cobalt oxide or cobalt nitride to cobalt metal as an active site for the reductive amination. Thus, the Pd inserted cobalt catalysts provide improved catalytic performance toward PEA production by maintaining the cobalt metal state.
Collapse
Affiliation(s)
- Kyungjun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Dong Woo Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Youngheon Choi
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Wanggyu Kim
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
19
|
Qiu Z, Zeng H, Li CJ. Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization-Rearomatization Processes. Acc Chem Res 2020; 53:2395-2413. [PMID: 32941014 DOI: 10.1021/acs.accounts.0c00479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions represent one of the most straightforward and efficient protocols to assemble two different molecular motifs for the construction of carbon-carbon or carbon-heteroatom bonds. Because of their importance and wide applications in pharmaceuticals, agrochemicals, materials, etc., cross-coupling reactions have been well recognized in the 2010 Nobel Prize in chemistry. However, in the classical transition-metal-catalyzed cross-coupling reactions (e.g., the Suzuki-Miyaura, the Buchwald-Hartwig, and the Ullmann cross-coupling reactions), organohalides, which mainly stem from the nonrenewable fossil resources, are often utilized as coupling partners with halide wastes being generated after the reactions. To make cross-coupling reactions more sustainable, we initiated a general research program by employing phenols and cyclohexa(e)nones (the reduced forms of phenols) as pivotal feedstocks (coupling partners), instead of the commonly used fossil-derived organohalides, for cross-coupling reactions to build C-O, C-N, and C-C bonds. Phenols (cyclohexa(e)nones) are widely available and can be obtained from lignin biomass, highlighting their renewable and sustainable features. Moreover, water is expected to be the only stoichiometric byproduct, thus avoiding halide wastes.Notably, the cross-coupling reactions utilizing phenols/cyclohexa(e)nones are not based on the traditional transition-metal-catalyzed "oxidative-addition and reductive-elimination" mechanism, but via a novel "phenol-cyclohexanone" redox couple. This new working mechanism opens up new horizons of designing cross-coupling reactions via simple nucleophilic addition of cyclohexanones along with aromatization processes, thereby simplifying the design and avoiding laborious optimization of transition-metal precursors (e.g., Pd, Ni, Cu, etc.), as well as ligands in classical transition-metal-catalyzed cross-coupling reactions. Specifically, in this Account, we will summarize and discuss our related research work in the following three categories: "formal oxidative couplings of cyclohexa(e)nones", "formal reductive couplings of phenols", and "formal redox-neutral couplings of phenols". The successes of these research projects clearly demonstrated our initial inspirations and rational designs to develop cross-coupling reactions without the "conventional cross-coupling conditions" by pushing the reaction frontiers from initial cyclohexanones, ultimately, to the sustainable phenol targets.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
20
|
Sun Z, Cheng J, Wang D, Yuan TQ, Song G, Barta K. Downstream Processing Strategies for Lignin-First Biorefinery. CHEMSUSCHEM 2020; 13:5199-5212. [PMID: 32748524 DOI: 10.1002/cssc.202001085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/03/2020] [Indexed: 05/14/2023]
Abstract
The lignin-first strategy has emerged as one of the most powerful approaches for generating novel platform chemicals from lignin by efficient depolymerization of native lignin. Because of the emergence of this novel depolymerization method and the definition of viable platform chemicals, future focus will soon shift towards innovative downstream processing strategies. Very recently, many interesting approaches have emerged that describe the production of valuable products across the whole value chain, including bulk and fine chemical building blocks, and several concrete examples have been developed for the production of polymers, pharmaceutically relevant compounds, or fuels. This Minireview provides an overview of these recent advances. After a short summary of catalytic systems for obtaining aromatic monomers, a comprehensive discussion on their separation and applications is given. This Minireview will fill the gap in biorefinery between deriving high yields of lignin monomers and tapping into their potential for making valuable consumer products.
Collapse
Affiliation(s)
- Zhuohua Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Jinling Cheng
- Department of Chemistry and the Key Laboratory of Atomic & Molecular Nanosciences, Tsinghua University, Beijing, 100084, P.R. China
| | - Dingsheng Wang
- Department of Chemistry and the Key Laboratory of Atomic & Molecular Nanosciences, Tsinghua University, Beijing, 100084, P.R. China
| | - Tong-Qi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Katalin Barta
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 TC, Groningen (The, Netherlands
| |
Collapse
|
21
|
Li CJ, Zeng H, Lang Y. Dearomatization–Rearomatization Strategy for Palladium-Catalyzed C–N Cross-Coupling Reactions. Synlett 2020. [DOI: 10.1055/s-0040-1705901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractSubstituted aromatic compounds play important roles in materials, biological agents, dyes, etc. Thus, the synthesis of substituted aromatic compounds has been a hot topic throughout the history of organic chemistry. Traditionally, the Friedel–Crafts reaction was a powerful tool for synthesizing substituted aromatic compounds. In recent decades, metal-catalyzed cross-coupling reactions were well developed via carbon–heteroatom bond cleavage, however, having difficulties towards some strong bonds, such as C(Ar)–OH. To overcome such challenges, newer strategies are needed. In this review, we summarize the recent efforts in the development of dearomatization–rearomatization strategy for cross-coupling reactions via C(Ar)–O bond cleavage.1 Introduction2 Dearomatization–Rearomatization Strategy for Cross-Coupling of Phenols3 Dearomatization–Rearomatization Strategy for Cross-Coupling of Biphenols4 Dearomatization–Rearomatization Strategy for Cross-Coupling of Diphenyl Ethers5 Dearomatization–Rearomatization Strategy for Cross-Coupling of Indoles6 Summary
Collapse
Affiliation(s)
- Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
| | - Yatao Lang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
| |
Collapse
|
22
|
Wang L, Liu M, Zha W, Wei Y, Ma X, Xu C, Lu C, Qin N, Gao L, Qiu W, Sa R, Fu X, Yuan R. Mechanistic study of visible light-driven CdS or g-C3N4-catalyzed C H direct trifluoromethylation of (hetero)arenes using CF3SO2Na as the trifluoromethyl source. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Qiu Z, Li CJ. Transformations of Less-Activated Phenols and Phenol Derivatives via C–O Cleavage. Chem Rev 2020; 120:10454-10515. [DOI: 10.1021/acs.chemrev.0c00088] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
24
|
Natte K, Narani A, Goyal V, Sarki N, Jagadeesh RV. Synthesis of Functional Chemicals from Lignin‐derived Monomers by Selective Organic Transformations. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000634] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kishore Natte
- Synthetic Chemistry and Petrochemicals Area Chemical and Material Sciences Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Anand Narani
- BioFuels Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Vishakha Goyal
- Synthetic Chemistry and Petrochemicals Area Chemical and Material Sciences Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Naina Sarki
- Synthetic Chemistry and Petrochemicals Area Chemical and Material Sciences Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | | |
Collapse
|
25
|
Grozavu A, Hepburn HB, Bailey EP, Lindsay-Scott PJ, Donohoe TJ. Rhodium catalysed C-3/5 methylation of pyridines using temporary dearomatisation. Chem Sci 2020; 11:8595-8599. [PMID: 34123119 PMCID: PMC8163342 DOI: 10.1039/d0sc02759f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pyridines are ubiquitous aromatic rings used in organic chemistry and are crucial elements of the drug discovery process. Herein we describe a new catalytic method that directly introduces a methyl group onto the aromatic ring; this new reaction is related to hydrogen borrowing, and is notable for its use of the feedstock chemicals methanol and formaldehyde as the key reagents. Conceptually, the C-3/5 methylation of pyridines was accomplished by exploiting the interface between aromatic and non-aromatic compounds, and this allows an oscillating reactivity pattern to emerge whereby normally electrophilic aromatic compounds become nucleophilic in the reaction after activation by reduction. Thus, a set of C-4 functionalised pyridines can be mono or doubly methylated at the C-3/5 positions. Electron poor pyridines can be activated by reduction and then methylated at C3/5 using formaldehyde.![]()
Collapse
Affiliation(s)
- Alexandru Grozavu
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Hamish B Hepburn
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Elliot P Bailey
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | | | - Timothy J Donohoe
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| |
Collapse
|
26
|
Liu F, Jiang H, Zhou Y, Shi Z. Direct Transformation of Arenols Based on C—O Activation. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology 100 Haiquan Rd Shanghai 201418 China
- Department of ChemistryFudan University 2005 Honghu Rd Shanghai 200438 China
| | - Hao‐jun Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology 100 Haiquan Rd Shanghai 201418 China
| | - Yi Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology 100 Haiquan Rd Shanghai 201418 China
| | - Zhang‐jie Shi
- Department of ChemistryFudan University 2005 Honghu Rd Shanghai 200438 China
| |
Collapse
|
27
|
Wang Z, Niu J, Zeng H, Li CJ. Construction of Spirocyclic Tetrahydro-β-carbolines via Cross-Annulation of Phenols with Tryptamines in Water. Org Lett 2019; 21:7033-7037. [PMID: 31436437 DOI: 10.1021/acs.orglett.9b02613] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phenols are readily available by degradation of lignin resource. Palladium-catalyzed conversion of phenols to tetrahydro-β-carboline skeletons bearing a spirocycle at the C-1 position in water is reported. Various substituted phenols are successfully cross-annulated with different tryptamines via sequential C(Ar)-O bond cleavage of phenols, C-H bond activation of tryptamines, and C-N/C-C bond formations. This method provides a new protocol of converting lignin phenols into high-value-added compounds, such as natural product Komavine.
Collapse
Affiliation(s)
- Zemin Wang
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiabin Niu
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
28
|
Guo W, Tong T, Liu X, Guo Y, Wang Y. Morphology‐Tuned Activity of Ru/Nb
2
O
5
Catalysts for Ketone Reductive Amination. ChemCatChem 2019. [DOI: 10.1002/cctc.201900335] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wanjun Guo
- Shanghai Key Laboratory of Functional Materials Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular EngineeringEast China University of Science of Technology No. 130 Meilong Road Shanghai 200237 P.R. China
| | - Tao Tong
- Shanghai Key Laboratory of Functional Materials Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular EngineeringEast China University of Science of Technology No. 130 Meilong Road Shanghai 200237 P.R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular EngineeringEast China University of Science of Technology No. 130 Meilong Road Shanghai 200237 P.R. China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular EngineeringEast China University of Science of Technology No. 130 Meilong Road Shanghai 200237 P.R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular EngineeringEast China University of Science of Technology No. 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
29
|
Qiu Z, Lv L, Li J, Li CC, Li CJ. Direct conversion of phenols into primary anilines with hydrazine catalyzed by palladium. Chem Sci 2019; 10:4775-4781. [PMID: 31160954 PMCID: PMC6509994 DOI: 10.1039/c9sc00595a] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Primary anilines are essential building blocks to synthesize various pharmaceuticals, agrochemicals, pigments, electronic materials, and others. To date, the syntheses of primary anilines mostly rely on the reduction of nitroarenes or the transition-metal-catalyzed Ullmann, Buchwald-Hartwig and Chan-Lam cross-coupling reactions with ammonia, in which non-renewable petroleum-based chemicals are typically used as feedstocks via multiple step syntheses. A long-standing scientific challenge is to synthesize various primary anilines directly from renewable sources. Herein, we report a general method to directly convert a broad range of phenols into the corresponding primary anilines with the cheap and widely available hydrazine as both amine and hydride sources with simple Pd/C as the catalyst.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Leiyang Lv
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Jianbin Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Chen-Chen Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| |
Collapse
|
30
|
Tomkins P, Valgaeren C, Adriaensen K, Cuypers T, De Vos DE. The impact of the nature of amine reactants in the palladium catalyzed conversion of phenol to N-substituted anilines. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|