1
|
Kuterasiński Ł, Sadowska M, Żeliszewska P, Napruszewska BD, Ruggiero-Mikołajczyk M, Pytlik M, Biessikirski A. Cu-Containing Faujasite-Type Zeolite as an Additive in Eco-Friendly Energetic Materials. Molecules 2024; 29:3184. [PMID: 38999136 PMCID: PMC11242950 DOI: 10.3390/molecules29133184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Regarding the current state of the art on the utilization of zeolites in industry, the application of zeolites as an additive to eco-friendly energetic materials indicates the innovative character of the present research. One of the most commonly used energetic materials in the mining industry (engineering works) is ANFO (ammonium nitrate fuel oil), due to its easy and cheap production procedure as well as its good energetic properties and vast possibilities for modification. In the present research, we investigated Cu-zeolite with a faujasite structure (Cu-FAU) as a modifier of ANFO-based energetic materials. Analysis of the results obtained from thermodynamic calculations of energetic performance led to the conclusion that the application of Cu-faujasite as an additive to ANFO resulted in a relevant reduction in the total emission of post-decomposition fumes, with simultaneous enhancement of the energetic properties of the energetic material, which corresponded with the changes in the status of the surface and the reduced thermal effect accompanying the ammonium nitrate's decomposition. From analysis of both the energetic performance and fumes, it may be concluded that our eco-friendly and enhanced energetic material can be used as a low-emission source of energy for the quarrying of raw materials.
Collapse
Affiliation(s)
- Łukasz Kuterasiński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Bogna Daria Napruszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Małgorzata Ruggiero-Mikołajczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Mateusz Pytlik
- Central Mining Institute-National Research Institute, 1 Gwarków Square, 40-166 Katowice, Poland
| | - Andrzej Biessikirski
- Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
2
|
Matam SK, Silverwood IP, Boudjema L, O'Malley AJ, Catlow CRA. Methanol diffusion and dynamics in zeolite H-ZSM-5 probed by quasi-elastic neutron scattering and classical molecular dynamics simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220335. [PMID: 37691467 PMCID: PMC10493552 DOI: 10.1098/rsta.2022.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 09/12/2023]
Abstract
Zeolite ZSM-5 is a key catalyst in commercially relevant processes including the widely studied methanol to hydrocarbon reaction, and molecular diffusion in zeolite pores is known to be a crucial factor in controlling catalytic reactions. Here, we present critical analyses of recent quasi-elastic neutron scattering (QENS) data and complementary molecular dynamics (MD) simulations. The QENS experiments show that the nature of methanol diffusion dynamics in ZSM-5 pores is dependent both on the Si/Al ratio (11, 25, 36, 40 and 140), which determines the Brønsted acid site density of the zeolite, and that the nature of the type of motion observed may vary qualitatively over a relatively small temperature range. At 373 K, on increasing the ratio from 11 to 140, the observed mobile methanol fraction increases and the nature of methanol dynamics changes from rotational (in ZSM-5 with Si/Al of 11) to translational diffusion. The latter is either confined localized diffusion within a pore in zeolites with ratios up to 40 or non-localized, longer-range diffusion in zeolite samples with the ratio of 140. The complementary MD simulations conducted over long time scales (1 ns), which are longer than those measured in the present study by QENS (≈1-440 ps), at 373 K predict the occurrence of long-range translational diffusion of methanol in ZSM-5, independent of the Si/Al ratios (15, 47, 95, 191 and siliceous MFI). The rate of diffusion increases slightly by increasing the ratio from 15 to 95 and thereafter does not depend on zeolite composition. Discrepancies in the observed mobile methanol fraction between the MD simulations (100% methanol mobility in ZSM-5 pores across all Si/Al ratios) and QENS experiments (for example, ≈80% immobile methanol in ZSM-5 with Si/Al of 11) are attributed to the differences in time resolutions of the techniques. This perspective provides comprehensive information on the effect of acid site density on methanol dynamics in ZSM-5 pores and highlights the complementarity of QENS and MD, and their advantages and limitations. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Santhosh K. Matam
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Ian P. Silverwood
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Lotfi Boudjema
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1E 6BT, UK
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alexander J. O'Malley
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Institute for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - C. Richard A. Catlow
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
You X, Zhang X, Ye Y, Zhou H, Jiang S, Zhou X, Dutta Chowdhury A. Evaluating the efficacy of zeolites synthesized from natural clay for the methanol-to-hydrocarbon process. Dalton Trans 2023; 52:14390-14399. [PMID: 37781869 DOI: 10.1039/d3dt02131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Introducing sustainability into advanced catalytic material design is essential to address growing environmental concerns. Among them, synthesizing inorganic zeolite materials from non-traditional sources (like natural clay) offers several advantages, contributing to sustainability and environmental stewardship. With this objective, we used kaolin to synthesize zeolites with different topologies: SSZ-13 (8-MR with CHA topology), ZSM-5 (10-MR with MFI topology), and Beta (12-MR with BEA topology) (MR: member ring), where a simple and flexible synthetic protocol was adopted without any significant changes. All these zeolites were subjected to catalytic performance evaluation concerning the industrially relevant methanol-to-hydrocarbon (MTH) process. Herein, the kaolin-derived zeolites, especially ZSM-5, led to superior performance and demonstrated enhanced catalyst deactivation-resistant behavior compared to their zeolite counterparts prepared from traditional synthetic routes. Various characterization tools (including under operando conditions) were employed to understand their reactions and deactivation mechanisms. Overall, making zeolites from non-traditional sources presents a pathway for sustainable and environmentally friendly material production, offering benefits such as reduced resource dependence, lower energy consumption, and tailored physicochemical properties beneficial to catalysis. In a broader context, such a research approach contributes to the transition toward a more sustainable and circular economy.
Collapse
Affiliation(s)
- Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Shican Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Xue Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | | |
Collapse
|
4
|
Yu X, Cheng Y, Li Y, Polo-Garzon F, Liu J, Mamontov E, Li M, Lennon D, Parker SF, Ramirez-Cuesta AJ, Wu Z. Neutron Scattering Studies of Heterogeneous Catalysis. Chem Rev 2023. [PMID: 37315192 DOI: 10.1021/acs.chemrev.3c00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure-catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron-nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis.
Collapse
Affiliation(s)
- Xinbin Yu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Jue Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Meijun Li
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David Lennon
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stewart F Parker
- ISIS Pulsed Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
| | - Anibal J Ramirez-Cuesta
- Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
5
|
Methanol diffusion in H-ZSM-5 catalysts as a function of loading and Si/Al ratio: A classical molecular dynamics study. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Porter AJ, Botchway C, Kwakye-Awuah B, Hernandez-Tamargo C, Matam S, McHugh S, Silverwood IP, O'Malley A, De Leeuw NH. Local and Nanoscale Methanol Mobility in Different H-FER Catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamical behaviour of methanol confined in zeolite H-FER has been studied using quasielastic neutron scattering (QENS) and classical molecular dynamics (MD) simulations to investigate the effects of the Si/Al...
Collapse
|
7
|
Omojola T, Logsdail AJ, van Veen AC, Nastase SAF. A quantitative multiscale perspective on primary olefin formation from methanol. Phys Chem Chem Phys 2021; 23:21437-21469. [PMID: 34569573 DOI: 10.1039/d1cp02551a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors. These results are supplemented with density functional theory calculations and data-driven physical models, using partial differential equations, that describe the temporal and spatial evolution of species. We consider the effects of steam, early degradation species, and product masking due to the inherent autocatalytic nature of the process, which all complicate the observation of the primary olefin(s). Although quantitative spectroscopic determination of the lifetimes, surface mobility, and reactivity of adspecies is still lacking in the literature, we observe that reaction barriers are competitive with adsorption enthalpies and/or activation energies of desorption, while facile diffusion occurs in the porous structures of the zeolite/zeotype catalysts. Understanding the various processes allows for quantitative evaluation of their competing energetics, which leads to molecular insights as to what governs the catalytic activity during the conversion of methanol to primary olefins over zeolite/zeotype catalysts.
Collapse
Affiliation(s)
- Toyin Omojola
- Department of Chemical Engineering, Claverton Down, University of Bath, Bath BA2 7AY, UK. .,School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - André C van Veen
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Stefan Adrian F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
8
|
Omojola T, van Veen AC. Mechanistic insights into the conversion of dimethyl ether over ZSM-5 catalysts: A combined temperature-programmed surface reaction and microkinetic modelling study. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Abstract
AbstractThe adsorption of methanol in HZSM-5 at low temperatures has long been regarded as an associative process involving hydrogen bonding to the acidic zeolite hydroxyl groups. Recent studies employing inelastic neutron scattering spectroscopy (INS) have reported that complete dissociation to methoxylate the zeolite occurs at 298 K, and infrared evidence for a partial dissociation at 298 K has also been described. Here we investigate the apparent contradictions between different techniques, using a combination of INS, infrared spectroscopy and solid-state NMR spectroscopy, including isotopic substitution experiments. Different possible explanations are proposed and considered; we conclude that at room temperature methanol is very largely associatively adsorbed, although the presence of some small extent (>1%) of methoxylation cannot be ruled out.
Collapse
|
10
|
Matam SK, Catlow CRA, Silverwood IP, O’Malley AJ. Methanol dynamics in H-ZSM-5 with Si/Al ratio of 25: a quasi-elastic neutron scattering (QENS) study. Top Catal 2021. [DOI: 10.1007/s11244-021-01450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractMethanol dynamics in zeolite H-ZSM-5 (Si/Al of 25) with a methanol loading of ~ 30 molecules per unit cell has been studied at 298, 323, 348 and 373 K by incoherent quasi-elastic neutron scattering (QENS). The elastic incoherent structure factor (EISF) reveals that the majority of methanol is immobile, in the range between 70 and 80%, depending on the measurement temperature. At 298 K, ≈ 20% methanol is mobile on the instrumental timescale, exhibiting isotropic rotational dynamics with a rotational diffusion coefficient (DR) of 4.75 × 1010 s−1. Upon increasing the measurement temperature from 298 to 323 K, the nature of the methanol dynamics changes from rotational to translational diffusion dynamics. Similar translational diffusion rates are measured at 348 and 373 K, though with a larger mobile fraction as temperature increases. The translational diffusion is characterised as jump diffusion confined to a sphere with a radius close to that of a ZSM-5 channel. The diffusion coefficients may be calculated using either the Volino–Dianoux (VD) model of diffusion confined to a sphere, or the Chudley–Elliot (CE) jump diffusion model. The VD model gives rise to a self-diffusion co-efficient (Ds) of methanol in the range of 7.8–8.4 × 10–10 m2 s−1. The CE model gives a Ds of around 1.2 (± 0.1) × 10–9 m2 s−1 with a jump distance of 2.8 (either + 0.15 or − 0.1) Å and a residence time (τ) of ~ 10.8 (either + 0.1 or − 0.2) ps. A correlation between the present and earlier studies that report methanol dynamics in H-ZSM-5 with Si/Al of 36 is made, suggesting that with increasing Si/Al ratio, the mobile fraction of methanol increases while DR decreases.
Collapse
|
11
|
Quasielastic Neutron Scattering and Molecular Dynamics Simulation Study on the Molecular Behaviour of Catechol in Zeolite Beta. Top Catal 2020. [DOI: 10.1007/s11244-020-01400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe dynamics of catechol in zeolite Beta was studied using quesielastic neutron scattering (QENS) experiments and molecular dynamics simulations at 393 K, to understand the behaviour of phenolic monomers relevant in the catalytic conversion of lignin via metal nanoparticles supported on zeolites. Compared to previous work studying phenol, both methods observe that the presence of the second OH group in catechol can hinder mobility significantly, as explained by stronger hydrogen-bonding interactions between catechol and the Brønsted sites of the zeolite. The instrumental timescale of the QENS experiment allows us to probe rotational motion, and the catechol motions are best fit to an isotropic rotation model with a $$D^{rot}$$
D
rot
of 2.9 × 10$$^{10}$$
10
s$$^{-1}$$
-
1
. While this $$D^{rot}$$
D
rot
is within error of that measured for phenol, the fraction of molecules immobile on the instrumental timescale is found to be significantly higher for catechol. The MD simulations also exhibit this increased in ‘immobility’, showing that the long-range translational diffusion coefficients of catechol are lower than phenol by a factor of 7 in acidic zeolite Beta, and a factor of $$\sim$$
∼
3 in the siliceous material, further illustrating the significance of Brønsted site H-bonding. Upon reproducing QENS observables from our simulations to probe rotational motions, a combination of two isotropic rotations was found to fit the MD-calculated EISF; one corresponds to the free rotation of catechol in the pore system of the zeolite, while the second rotation is used to approximate a restricted and rapid “rattling”, consistent with molecules anchored to the acid sites through their OH groups, the motion of which is too rapid to be observed by experiment.
Collapse
|
12
|
O'Malley AJ, García Sakai V, Dimitratos N, Jones W, Catlow C, Parker SF. Octane isomer dynamics in H-ZSM-5 as a function of Si/Al ratio: a quasi-elastic neutron scattering study. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20200063. [PMID: 32623986 PMCID: PMC7422888 DOI: 10.1098/rsta.2020.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Dynamical behaviour of n-octane and 2,5-dimethylhexane in H-ZSM-5 zeolite catalysts of differing Si/Al ratios (15 and 140) was probed using quasi-elastic neutron scattering, to understand molecular shape and Brønsted acid site density effects on the behaviour of common species in the fluid catalytic cracking (FCC) process, where H-ZSM-5 is an additive catalyst. Between 300 and 400 K, n-octane displayed uniaxial rotation around its long axis. However, the population of mobile molecules was larger in H-ZSM-5(140), suggesting that the lower acid site concentration allows for more molecules to undergo rotation. The rotational diffusion coefficients were higher in H-ZSM-5(140), reflecting this increase in freedom. 2,5-dimethylhexane showed qualitative differences in behaviour to n-octane, with no full molecule rotation, probably due to steric hindrance in the constrictive channels. However, methyl group rotation in the static 2,5-dimethylhexane molecules was observed, with lower mobile fractions in H-ZSM-5(15), suggesting that this rotation is less hindered when fewer Brønsted sites are present. This was further illustrated by the lower activation barrier calculated for methyl rotation in H-ZSM-5(140). We highlight the significant immobilizing effect of isomeric branching in this important industrial catalyst and show how compositional changes of the zeolite can affect a range of dynamical behaviours of common FCC species upon adsorption. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Collapse
Affiliation(s)
- Alexander J. O'Malley
- Centre for Sustainable and Circular Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxon OX11 0QX, UK
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxon OX11 0QX, UK
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Wilm Jones
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxon OX11 0QX, UK
- Department of Chemistry, University College London, 20 Gordon St., London WC1 HOAJ, UK
| | - C. Richard A. Catlow
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxon OX11 0QX, UK
- Cardiff Catalysis Department, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
- Department of Chemistry, University College London, 20 Gordon St., London WC1 HOAJ, UK
| | - Stewart F. Parker
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxon OX11 0QX, UK
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxon OX11 0QX, UK
| |
Collapse
|
13
|
Zhokh AA. Effect of Catalyst (de)activation on Reagent Diffusion in ZSM-5/alumina Extruded Pellet for the Methanol-to-hydrocarbons Conversion. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A pelletized ZSM-5/alumina catalyst was prepared by the extrusion technique. The catalyst was activated by ion-exchange with NH4NO3 aqueous solution. The activated catalyst was trained in the methanol-to-hydrocarbons reaction which caused the catalyst deactivation due to coke deposition (6.5 % wt.). Coke deposition resulted in a two-time decrease in the micropore volume. The methane, benzene, and methanol transport through ZSM-5/alumina pellet were consequently studied prior to activation, after activation, and after catalyst deactivation. A slight decrease in the diffusion rate after catalyst activation is observed. After deactivation, the diffusion rate increases insignificantly. The diffusion regime remains unchanged with respect to either activation or deactivation procedure. Contrary, for the methanol, the diffusion rate through a deactivated catalyst pellet remarkably increases due to micropore blockage by coke deposition. The obtained results reveal that the micropores blockage during the catalyst deactivation enhances the methanol mass transfer.
Collapse
|
14
|
Omojola T, Silverwood IP, O'Malley AJ. Molecular behaviour of methanol and dimethyl ether in H-ZSM-5 catalysts as a function of Si/Al ratio: a quasielastic neutron scattering study. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00670j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Qualitative and quantitative differences are found in methanol and dimethyl ether mobility in H-ZSM-5 catalysts of varying Si/Al ratios (Brønsted acid site concentrations) using quasielastic neutron scattering.
Collapse
Affiliation(s)
- Toyin Omojola
- Department of Chemical Engineering
- University of Bath
- Bath
- UK
| | - Ian P. Silverwood
- ISIS Pulsed Neutron and Muon Facility
- Science and Technology Facilities Council Rutherford Appleton Laboratory
- Harwell Science and Innovation Campus
- Oxon OX11 0QX
- UK
| | - Alexander J. O'Malley
- Centre for Sustainable and Circular Technologies
- Department of Chemistry
- University of Bath
- Bath
- UK
| |
Collapse
|
15
|
Overview of Current and Future Perspectives of Saudi Arabian Natural Clinoptilolite Zeolite: A Case Review. J CHEM-NY 2019. [DOI: 10.1155/2019/3153471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
After a thorough review of existing studies of clinoptilolite zeolites, three areas for potential investigation of the Saudi Arabian zeolites were found. They are the characterizations, the catalytic activity, active sites, and uses of natural clinoptilolite zeolites. First, no analysis is available worldwide to compare the percentage weight of local zeolites with those sourced from other countries, nor does one exist for the establishment on the zeolite conversion of MBOH with water on acidic catalysts at lower temperatures. Secondly, a review of current literature on the topic revealed that basic and active sites of Saudi Arabian zeolites have yet to be examined. Future investigation of zeolite catalytic activity can be achieved by methyl butynol test reaction (MBOH) and absorption-desorption of ammonia. In the characterization of a range of international materials, the methyl butynol test reaction was utilized, including on natural zeolites, natural clays, and synthesized hydrotalcites. However, the catalytic performance of natural Saudi Arabian clinoptilolite zeolites by test reaction of MBOH conversion has not been yet investigated. Therefore, this article also includes an outline of the general testing conditions and parameters required to execute the accurate characterization of local Saudi clinoptilolite under optimal test conditions. Likewise, knowledge of the important active acidic centers of local materials is prescribed. This can be ascertained by determining the conditions together with the test parameters for the application of the “temperature-programmed desorption of ammonia” method in order to obtain an accurate determination of local Saudi clinoptilolite acidic centers. Additionally, an outline of the catalytic activity of worldwide clinoptilolite is given in this article together with kinetic investigations of other sources for the clinoptilolite zeolite in order to form the basis for the testing of local Saudi clinoptilolite. The percentage average of chemical composition (Wt.%) of natural clinoptilolite from various countries is also included. Finally, a future research plan is proposed here. This will form the basis for a complete study or survey to be compiled detailing the modifications needed to increase the surface areas for Saudi natural clinoptilolite zeolites using different methods of modifications. This could enhance its application as acid catalysts for use in the retardation of coke formation and for membrane separation on cationic exchange.
Collapse
|
16
|
Hernandez-Tamargo C, O'Malley A, Silverwood IP, de Leeuw NH. Molecular behaviour of phenol in zeolite Beta catalysts as a function of acid site presence: a quasielastic neutron scattering and molecular dynamics simulation study. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01548e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamic behaviour of phenol in zeolite Beta is strongly influenced by the presence of Brønsted acid sites.
Collapse
Affiliation(s)
| | - Alexander O'Malley
- The Centre for Sustainable Chemical Technologies (CSCT)
- Department of Chemistry
- University of Bath
- Bath
- UK
| | - Ian P. Silverwood
- ISIS Pulsed Neutron and Muon Facility
- Science and Technology Facilities Council Rutherford Appleton Laboratory
- Harwell Science and Innovation Campus
- UK
| | | |
Collapse
|
17
|
Matam SK, Howe RF, Thetford A, Catlow CRA. Room temperature methoxylation in zeolite H-ZSM-5: an operando DRIFTS/mass spectrometric study. Chem Commun (Camb) 2018; 54:12875-12878. [DOI: 10.1039/c8cc07444e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At high loading, methanol reacts under ambient conditions with acidic hydroxyls of H-ZSM-5 to methoxylate framework oxygen; while a significant proportion remains hydrogen bonded to the framework with protonated geometry.
Collapse
Affiliation(s)
- Santhosh K. Matam
- Department of Chemistry
- University College London
- London
- UK
- The UK Catalysis Hub
| | | | - Adam Thetford
- Department of Chemistry
- University College London
- London
- UK
- The UK Catalysis Hub
| | | |
Collapse
|