1
|
Sagar S, Nath P, Ray A, Sarkar A, Panda TK. Crafting sustainable solutions: architecting biodegradable copolymers through controlled ring-opening copolymerization. Dalton Trans 2024; 53:12837-12866. [PMID: 38973394 DOI: 10.1039/d4dt01054j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Polylactic acid (PLA) is a biodegradable and biocompatible polymer with versatile applications in packaging and medicine. It is derived from lactic acid and thus represents an eco-friendly option sourced from renewable raw materials. Despite its advantages, PLA exhibits few drawbacks, such as brittleness and relatively high melting and glass transition temperatures. However, these limitations can be addressed through copolymerization with other monomers like ε-caprolactone (ε-CL), resulting in a composite material with improved physical properties. This paper comprehensively reviews achievements in PLA-PCL copolymerization using organometallic catalysts, discussing scientific findings and various copolymer architectures obtained, including random or block configurations. It also demonstrates various sustainable catalysts for achieving the required microstructure under mild reaction conditions without the aid of any external initiator.
Collapse
Affiliation(s)
- Shweta Sagar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Priyanku Nath
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Aranya Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Alok Sarkar
- Momentive Performance Materials Pvt. Ltd, Survey No. 09, Hosur Road, Electronic City (West), Bangalore-560100, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| |
Collapse
|
2
|
Santulli F, Tufano F, Cozzolino M, D'Auria I, Strianese M, Mazzeo M, Lamberti M. Cooperative effects of Schiff base binuclear zinc complexes on the synthesis of aliphatic and semi-aromatic polyesters. Dalton Trans 2023; 52:14400-14408. [PMID: 37791380 DOI: 10.1039/d3dt02396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this paper, we use mono- and bimetallic complexes based on Earth-abundant, cheap and benign zinc for the synthesis of sustainable aliphatic and semi-aromatic polyesters. Tridentate and hexadentate aldimine-thioetherphenolate ligands were used to obtain the desired zinc complexes by the reaction of proligands with opportune equivalents of zinc bis[bis(trimethylsilyl)amide]. The obtained bimetallic complexes 1 and 2 and the monometallic complex 3 were used as catalysts in the Ring-Opening Polymerization (ROP) of landmark cyclic esters, such as ε-caprolactone and lactide, and in the Ring-Opening COPolymerization (ROCOP) of cyclohexene oxide and phthalic anhydride under different reaction conditions. All catalysts were active in these two classes of reactions, showing good control of the polymerization processes. Interestingly, the bimetallic complexes have higher activity compared to their monometallic counterparts, highlighting the cooperation between the two zinc centers.
Collapse
Affiliation(s)
- Federica Santulli
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Federica Tufano
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Mariachiara Cozzolino
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Ilaria D'Auria
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Maria Strianese
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Mina Mazzeo
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Marina Lamberti
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
3
|
Santulli F, Grimaldi I, Pappalardo D, Lamberti M, Mazzeo M. Salen-like Chromium and Aluminum Complexes as Catalysts in the Copolymerization of Epoxides with Cyclic Anhydrides for the Synthesis of Polyesters. Int J Mol Sci 2023; 24:10052. [PMID: 37373200 DOI: 10.3390/ijms241210052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chromium and aluminum complexes bearing salalen ligands were explored as catalysts for the ring-opening copolymerization (ROCOP) of succinic (SA), maleic (MA), and phthalic (PA) anhydrides with several epoxides: cyclohexene oxide (CHO), propylene oxide (PO), and limonene oxide (LO). Their behavior was compared with that of traditional salen chromium complexes. A completely alternating enchainment of monomers to provide pure polyesters was achieved with all the catalysts when used in combination with 4-(dimethylamino)pyridine (DMAP) as the cocatalyst. Poly(propylene maleate-block-polyglycolide), a diblock polyester with a precise composition, was obtained by switch catalysis, in which the same catalyst was able to combine the ROCOP of propylene oxide and maleic anhydride with the ring-opening polymerization (ROP) of glycolide (GA) through a one-pot procedure, starting from an initial mixture of the three different monomers.
Collapse
Affiliation(s)
- Federica Santulli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Ilaria Grimaldi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via de Sanctis snc, 82100 Benevento, Italy
| | - Marina Lamberti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Grimaldi I, Santulli F, Lamberti M, Mazzeo M. Chromium Complexes Supported by Salen-Type Ligands for the Synthesis of Polyesters, Polycarbonates, and Their Copolymers through Chemoselective Catalysis. Int J Mol Sci 2023; 24:ijms24087642. [PMID: 37108806 PMCID: PMC10144741 DOI: 10.3390/ijms24087642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Salen, Salan, and Salalen chromium (III) chloride complexes have been investigated as catalysts for the ring-opening copolymerization reactions of cyclohexene oxide (CHO) with CO2 and of phthalic anhydride (PA) with limonene oxide (LO) or cyclohexene oxide (CHO). In the production of polycarbonates, the more flexible skeleton of salalen and salan ancillary ligands favors high activity. Differently, in the copolymerization of phthalic anhydride with the epoxides, the salen complex showed the best performance. Diblock polycarbonate-polyester copolymers were selectively obtained by one-pot procedures from mixtures of CO2, cyclohexene oxide, and phthalic anhydride with all complexes. In addition, all chromium complexes were revealed to be very active in the chemical depolymerization of polycyclohexene carbonate producing cyclohexene oxide with high selectivity, thus offering the opportunity to close the loop on the life of these materials.
Collapse
Affiliation(s)
- Ilaria Grimaldi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Federica Santulli
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Marina Lamberti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
5
|
Capacchione C, Grisi F, Lamberti M, Mazzeo M, Milani B, Milione S, Pappalardo D, Zuccaccia C, Pellecchia C. Metal Catalyzed Polymerization: From Stereoregular Poly(α‐olefins) to Tailor‐Made Biodegradable/Biorenewable Polymers and Copolymers. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carmine Capacchione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Fabia Grisi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Barbara Milani
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Stefano Milione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie Università del Sannio Via de Sanctis snc 82100 Benevento Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06132 Perugia Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
6
|
Gao Z, Gao B, Zhou Y, Pang X. Degradable terpolyesters synthesized from a monomer mixture mediated by a heterometallic complex: Defined monomer- and stereo-sequences. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
D’Auria I, D’Aniello S, Viscusi G, Lamberti E, Gorrasi G, Mazzeo M, Pappalardo D. One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters. Polymers (Basel) 2022; 14:polym14224911. [PMID: 36433038 PMCID: PMC9695062 DOI: 10.3390/polym14224911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of novel block copolymers, namely poly(limonene-phthalate)-block-poly(pentadecalactone) and poly(limonene-phthalate)-block-poly(pentadecalactone) is here described. To achieve this synthesis, a bimetallic aluminum based complex (1) was used as catalyst in the combination of two distinct processes: the ring-opening polymerization (ROP) of macrolactones such as ω-pentadecalactone (PDL) and ω-6-hexadecenlactone (HDL) and the ring-opening copolymerization (ROCOP) of limonene oxide (LO) and phthalic anhydride (PA). The synthesis of di-block polyesters was performed in a one-pot procedure, where the semi-aromatic polyester block was firstly formed by ROCOP of LO and PA, followed by the polyethylene like portion produced by ROP of macrolactones (PDL or HDL). The obtained di-block semiaromatic polyesters were characterized by NMR and GPC. The structural organization was analyzed through XRD. Thermal properties were evaluated using differential thermal analysis (DSC) and thermogravimetric measurements (TGA) either in air or in nitrogen atmosphere.
Collapse
Affiliation(s)
- Ilaria D’Auria
- Department of Chemistry and Biology “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Sara D’Aniello
- Department of Chemistry and Biology “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Elena Lamberti
- Department of Industrial Engineering, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
- Correspondence: (M.M.); (D.P.)
| | - Daniela Pappalardo
- Department of Science and Technology, Università del Sannio, Via de Sanctis snc Benevento, 82100 Benevento, BN, Italy
- Correspondence: (M.M.); (D.P.)
| |
Collapse
|
8
|
Zinc and magnesium catalysts for the synthesis for PLA and its degradation: Clues for catalyst design. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Xie H, Feng J, Yang X, Zhao Y, Song P, Wang H, Xu Z. One‐pot sequence‐selective synthesis of polylactone‐containing block terpolymers based on renewable terpenoid‐derived monomer and a simple organocatalyst. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongyan Xie
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Jiabing Feng
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Xiaoxia Yang
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Yan Zhao
- College of Textile and Clothing Engineering Soochow University Suzhou China
| | - Pingan Song
- Centre for Future Materials University of Southern Queensland Toowoomba Australia
| | - Hao Wang
- Centre for Future Materials University of Southern Queensland Toowoomba Australia
| | - Zhiguang Xu
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| |
Collapse
|
10
|
He G, Li H, Zhao J. One‐Step Sequence‐Selective Synthesis of Block Copolyester from Mixed Phthalic Anhydride, Cyclohexene Oxide, and
δ
‐Valerolactone. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guanchen He
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Heng Li
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
11
|
Qian C, Yuan D, Wang Y, Yao Y. Aluminium complexes supported by a thioether-bridged salen ligand: synthesis, characterization and application in ε-caprolactone homopolymerization and copolymerization with L-lactide. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Ludin DV, Zaitsev SD, Markin AV, Grishin ID, Sologubov SS, Kovylina TA, Fedushkin IL. New method for controlled synthesis of polylactide block copolymers: organoborane/
p
‐quinone
system and
reversible‐deactivation
radical polymerization. POLYM INT 2021. [DOI: 10.1002/pi.6287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dmitrii V Ludin
- Research Educational Center ‘Chemistry of Molecules and Materials’ Minin University Nizhny Novgorod Russian Federation
| | - Sergey D Zaitsev
- Chemistry Department Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russian Federation
| | - Alexey V Markin
- Chemistry Department Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russian Federation
| | - Ivan D Grishin
- Chemistry Department Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russian Federation
| | - Semen S Sologubov
- Chemistry Department Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russian Federation
| | - Tatyana A Kovylina
- GA Razuvaev Institute of Organometallic Chemistry of Russian Academy of Science (RAS) Nizhny Novgorod Russian Federation
| | - Igor L Fedushkin
- Research Educational Center ‘Chemistry of Molecules and Materials’ Minin University Nizhny Novgorod Russian Federation
- GA Razuvaev Institute of Organometallic Chemistry of Russian Academy of Science (RAS) Nizhny Novgorod Russian Federation
| |
Collapse
|
13
|
D'Auria I, Santulli F, Ciccone F, Giannattasio A, Mazzeo M, Pappalardo D. Synthesis of Semi‐Aromatic Di‐Block Polyesters by Terpolymerization of Macrolactones, Epoxides, and Anhydrides. ChemCatChem 2021. [DOI: 10.1002/cctc.202100434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ilaria D'Auria
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Federica Santulli
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Francesca Ciccone
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Alessia Giannattasio
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie Università del Sannio Via de Sanctis snc 82100 Benevento Italy
| |
Collapse
|
14
|
Yuntawattana N, Gregory GL, Carrodeguas LP, Williams CK. Switchable Polymerization Catalysis Using a Tin(II) Catalyst and Commercial Monomers to Toughen Poly(l-lactide). ACS Macro Lett 2021; 10:774-779. [PMID: 34306820 PMCID: PMC8296665 DOI: 10.1021/acsmacrolett.1c00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Sustainable plastics sourced without virgin petrochemicals, that are easily recyclable and with potential for degradation at end of life, are urgently needed. Here, copolymersand blends meeting these criteria are efficiently prepared using a single catalyst and existing commercial monomers l-lactide, propylene oxide, and maleic anhydride. The selective, one-reactor polymerization applies an industry-relevant tin(II) catalyst. Tapered, miscible block polyesters are formed with alkene groups which are postfunctionalized to modulate the polymer glass transition temperature. The polymers are blended at desirable low weight fractions (2 wt %) with commercial poly(l-lactide) (PLLA), increasing toughness, and elongation at break without compromising the elastic modulus, tensile strength, or thermal properties. The selective polymerization catalysis, using commercial monomers and catalyst, provides a straightforward means to improve bioplastics performances.
Collapse
Affiliation(s)
- Nattawut Yuntawattana
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Georgina L. Gregory
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Leticia Peña Carrodeguas
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
15
|
Deacy A, Gregory GL, Sulley GS, Chen TTD, Williams CK. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J Am Chem Soc 2021; 143:10021-10040. [PMID: 34190553 PMCID: PMC8297863 DOI: 10.1021/jacs.1c03250] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 12/24/2022]
Abstract
There is an ever-increasing demand for higher-performing polymeric materials counterbalanced by the need for sustainability throughout the life cycle. Copolymers comprising ester, carbonate, or ether linkages could fulfill some of this demand as their monomer-polymer chemistry is closer to equilibrium, facilitating (bio)degradation and recycling; many monomers are or could be sourced from renewables or waste. Here, an efficient and broadly applicable route to make such copolymers is discussed, a form of switchable polymerization catalysis which exploits a single catalyst, switched between different catalytic cycles, to prepare block sequence selective copolymers from monomer mixtures. This perspective presents the principles of this catalysis, catalyst design criteria, the selectivity and structural copolymer characterization tools, and the properties of the resulting copolymers. Uses as thermoplastic elastomers, toughened plastics, adhesives, and self-assembled nanostructures, and for programmed degradation, among others, are discussed. The state-of-the-art research into both catalysis and products, as well as future challenges and directions, are presented.
Collapse
Affiliation(s)
| | | | - Gregory S. Sulley
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Thomas T. D. Chen
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Charlotte K. Williams
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
16
|
Strianese M, Pappalardo D, Mazzeo M, Lamberti M, Pellecchia C. The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: a new and unique perspective. Dalton Trans 2021; 50:7898-7916. [PMID: 33999066 DOI: 10.1039/d1dt00841b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the recent developments in the field of metalloporphyrins as optical probes for biologically relevant molecules, such as nitric oxide (NO) and hydrogen sulfide (H2S), and as catalysts for the preparation of sustainable polymers such as polyesters, by the ring-opening polymerization (ROP) of cyclic esters and the ring-opening co-polymerization (ROCOP) of epoxides and anhydrides, and polycarbonates by the chemical fixation of carbon dioxide (CO2). The great potential of porphyrins is mainly due to the possibility of making various synthetic modifications to the porphyrin ring, such as modifying the coordinated metal, peripheral substituents, or even the molecular skeleton. Due to the strict structure-property relationships, one can use porphyrinoids in several different applications such as, for instance, activation of molecular oxygen or catalysis of photosynthetic processes. These possibilities broaden the application of porphyrins in several different fields of research, further mimicking what nature does. In this context, here, we want to provide evidence for the great flexibility of metalloporphyrins by presenting an overview of results obtained by us and others in the research fields we are currently involved in. More specifically, we report a survey of our most significant achievements regarding their use as optical probes in the context of the results reported in the literature from other research groups, and of the use of porphyrin metal(iii) complexes as catalysts for sustainable polymerization processes. As for the optical probe section, in addition to the metalloporphyrins synthesized ad hoc in the laboratory, the present work also covers the natural proteins containing a porphyrin core.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Daniela Pappalardo
- Università del Sannio, Dipartimento di Scienze e Tecnologie, via de Sanctis, 82100, Benevento, Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
17
|
|
18
|
Gruszka W, Garden JA. Advances in heterometallic ring-opening (co)polymerisation catalysis. Nat Commun 2021; 12:3252. [PMID: 34059676 PMCID: PMC8167082 DOI: 10.1038/s41467-021-23192-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Truly sustainable plastics require renewable feedstocks coupled with efficient production and end-of-life degradation/recycling processes. Some of the most useful degradable materials are aliphatic polyesters, polycarbonates and polyamides, which are often prepared via ring-opening (co)polymerisation (RO(CO)P) using an organometallic catalyst. While there has been extensive research into ligand development, heterometallic cooperativity offers an equally promising yet underexplored strategy to improve catalyst performance, as heterometallic catalysts often exhibit significant activity and selectivity enhancements compared to their homometallic counterparts. This review describes advances in heterometallic RO(CO)P catalyst design, highlighting the overarching structure-activity trends and reactivity patterns to inform future catalyst design.
Collapse
Affiliation(s)
- Weronika Gruszka
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Garden
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Ring-Opening Copolymerization of Cyclohexene Oxide and Cyclic Anhydrides Catalyzed by Bimetallic Scorpionate Zinc Catalysts. Polymers (Basel) 2021; 13:polym13101651. [PMID: 34069623 PMCID: PMC8161297 DOI: 10.3390/polym13101651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
The catalytic activity and high selectivity reported by bimetallic heteroscorpionate acetate zinc complexes in ring-opening copolymerization (ROCOP) reactions involving CO2 as substrate encouraged us to expand their use as catalysts for ROCOP of cyclohexene oxide (CHO) and cyclic anhydrides. Among the catalysts tested for the ROCOP of CHO and phthalic anhydride at different reaction conditions, the most active catalytic system was the combination of complex 3 with bis(triphenylphosphine)iminium as cocatalyst in toluene at 80 °C. Once the optimal catalytic system was determined, the scope in terms of other cyclic anhydrides was broadened. The catalytic system was capable of copolymerizing selectively and efficiently CHO with phthalic, maleic, succinic and naphthalic anhydrides to afford the corresponding polyester materials. The polyesters obtained were characterized by spectroscopic, spectrometric, and calorimetric techniques. Finally, the reaction mechanism of the catalytic system was proposed based on stoichiometric reactions.
Collapse
|
20
|
Kost B, Basko M. Synthesis and properties of l-lactide/1,3-dioxolane copolymers: preparation of polyesters with enhanced acid sensitivity. Polym Chem 2021. [DOI: 10.1039/d1py00358e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the first example of cationic ring-opening copolymerization of 5-membered cyclic acetal (1,3-dioxolane (DXL)) with l-lactide (LA) to afford polylactide containing acetal units.
Collapse
Affiliation(s)
- Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Malgorzata Basko
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Lodz
- Poland
| |
Collapse
|
21
|
Diment WT, Stößer T, Kerr RWF, Phanopoulos A, Durr CB, Williams CK. Ortho-vanillin derived Al(iii) and Co(iii) catalyst systems for switchable catalysis using ε-decalactone, phthalic anhydride and cyclohexene oxide. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02164d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Switchable catalysis is a useful one-pot method to prepare block polyesters utilising a single catalyst exposed to a mixture of monomers.
Collapse
Affiliation(s)
| | - Tim Stößer
- Oxford Chemistry
- Chemical Research Laboratory
- Oxford
- UK
| | | | | | | | | |
Collapse
|
22
|
Diaz C, Mehrkhodavandi P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym Chem 2021. [DOI: 10.1039/d0py01534b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxygenated block copolymers with biodegradable polyester segments can be prepared in one-pot through sequential or simultaneous addition of monomers. This review highlights the state of the art in this area.
Collapse
Affiliation(s)
- Carlos Diaz
- University of British Columbia
- Department of Chemistry
- Vancouver
- Canada
| | | |
Collapse
|
23
|
Strianese M, Pappalardo D, Mazzeo M, Lamberti M, Pellecchia C. Salen-type aluminum and zinc complexes as two-faced Janus compounds: contribution to molecular sensing and polymerization catalysis. Dalton Trans 2020; 49:16533-16550. [PMID: 33140763 DOI: 10.1039/d0dt02639e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of the present review is to highlight the most recent achievements in different fields of application of salen-based zinc and aluminum complexes. More specifically this article focuses on the use of aluminum and zinc salen-type complexes as optical probes for biologically relevant molecules, as catalysts for the ring opening polymerization (ROP) of cyclic esters and co-polymerization of epoxides and anhydrides (ROCOP) and in the chemical fixation of carbon dioxide (CO2). The intention is to provide an overview of the most recent results from our group within the framework of the state-of-art-results in the literature.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | | | | | | | | |
Collapse
|
24
|
New way of anionic ring-opening copolymerization of β-butyrolactone and ε-caprolactone: determination of the reaction course. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02333-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractPoly(ε-caprolactone)-block-poly(β-butyrolactone) copolymers were prepared in two-step synthesis. Firstly, poly(ε-caprolactone) (PCL) was obtained by anionic ring-opening polymerization of CL initiated with anhydrous KOH activated 12-crown-4 cation complexing agent. Reaction was carried out in tetrahydrofuran solution and argon atmosphere at room temperature. Then, β-butyrolactone (BL) and 18-crown-6 were added to the system, resulting in PCL-block-PBL copolymer, which contains after methylation hydroxyl starting group and methyl ester end group. The main product was contaminated with PCL and PBL homopolymers formed in a side reactions. 13C NMR technique was used for determination of chemical structure of polymers obtained. The course of the studied processes was proposed. MALDI-TOF technique was used to reveal the macromolecules’ architecture where several series were found. The identified series shown that mainly copolymeric macromolecules were formed with scare contribution of homopolymeric polybutyrolactone with trans-crotonate starting groups and polycaprolactone, which is congruent with the proposed reaction mechanism. Moreover, critical approach concerning previously reported PCL-block-PBL copolymer synthesis by use of NaH as initiator was also presented.
Collapse
|
25
|
Diaz C, Tomković T, Goonesinghe C, Hatzikiriakos SG, Mehrkhodavandi P. One-Pot Synthesis of Oxygenated Block Copolymers by Polymerization of Epoxides and Lactide Using Cationic Indium Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Carlos Diaz
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Tanja Tomković
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chatura Goonesinghe
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Savvas G. Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
26
|
Ungpittagul T, Jaenjai T, Roongcharoen T, Namuangruk S, Phomphrai K. Unprecedented Double Insertion of Cyclohexene Oxide in Ring-Opening Copolymerization with Cyclic Anhydrides Catalyzed by a Tin(II) Alkoxide Complex. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Thasanaporn Ungpittagul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Tiphanan Jaenjai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Thantip Roongcharoen
- National Nanotechnology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
27
|
Ghosh S, Glöckler E, Wölper C, Tjaberings A, Gröschel AH, Schulz S. Active Ga-catalysts for the ring opening homo- and copolymerization of cyclic esters, and copolymerization of epoxide and anhydrides. Dalton Trans 2020; 49:13475-13486. [PMID: 32966460 DOI: 10.1039/d0dt02831b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of gallium complexes L12Ga4Me8 (1), L22Ga4Me8 (2), and L32Ga4Me8 (3) was synthesized by reaction of GaMe3 with Schiff base ligands L1-3H2 (L1H2 = 2,4-di-tert-butyl-6-{[(3-hydroxypropyl)imino]methyl}phenol; L2H2 = 2,4-dichloro-6-{[(3-hydroxypropyl)imino]methyl}phenol; L3H2 = 4-tert-butyl-2-{[(3-hydroxypropyl)imino]methyl}phenol) and characterized by 1H, 13C NMR, IR spectroscopy, elemental analysis and single crystal X-ray analysis (1, 2), proving their tetranuclear structure in the solid state. Complexes 1-3 showed good catalytic activity in the ring opening homopolymerization (ROP) and ring opening copolymerization (ROcoP) of lactide (LA) and ε-caprolactone (ε-CL) in the presence of benzyl alcohol (BnOH) in toluene at 100 °C, yielding polymers with the expected average molecular weights (Mn) and narrow molecular weight distributions (MWD), as well as a high isoselectivity for the ROP of rac-lactide (rac-LA), yielding isotactic-enriched PLAs with Pm values up to 0.78. Kinetic studies with complex 1 proved the first order dependence on monomer concentration, while mechanistic studies confirmed the coordination insertion mechanistic (CIM) pathway. Sequential addition of monomers gave well defined diblock copolymers of PCL-b-PLLA and PLLA-b-PCL, proving the living character of the polymerization reactions. The catalysts also showed perfect selectivity for the copolymerization of cyclohexene oxide (CHO) with both succinic anhydride (SA) and maleic anhydride (MA) in the presence of BnOH and produced >99% alternating block copolymers.
Collapse
Affiliation(s)
- Swarup Ghosh
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, S07 S03 C30, D-45141 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Shaik M, Chidara VK, Abbina S, Du G. Zinc Amido-Oxazolinate Catalyzed Ring Opening Copolymerization and Terpolymerization of Maleic Anhydride and Epoxides. Molecules 2020; 25:E4044. [PMID: 32899682 PMCID: PMC7570669 DOI: 10.3390/molecules25184044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
Ring opening copolymerization (ROCOP) of epoxides and cyclic anhydrides has become an attractive approach for the synthesis of biodegradable polyesters with various compositions. Encouraged by the efficiency and versatility of a series of amido-oxazolinate zinc complexes, in this study they were shown to be active catalysts for the synthesis of unsaturated polyesters via ROCOP of maleic anhydride and various epoxides. The relative activity of epoxides in these reactions was observed to be styrene oxide > cyclohexene oxide > phenyl glycidyl ether, which could be correlated with the electronic and steric features of the substrate. To provide more structural possibilities for the polyesters, the difference in epoxide reactivity was exploited in an attempt to prepare block terpolymers from one anhydride and two epoxides. Terpolymerization was carried out in one or two steps in a single pot. The thermal characterization by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques suggested that the resulting materials were mostly random terpolymers.
Collapse
Affiliation(s)
- Muneer Shaik
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA
| | - Vamshi K Chidara
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA
| | - Srinivas Abbina
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA
| | - Guodong Du
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA
| |
Collapse
|
29
|
Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts 2020. [DOI: 10.3390/catal10070800] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This review describes the recent advances (from 2008 onwards) in the use of Schiff-base metal complexes as catalysts for the ring opening polymerization (ROP) of cyclic esters. The synthesis and structure of the metal complexes, as well as all aspects concerning the polymerization process and the characteristics of the polymers formed, will be discussed.
Collapse
|
30
|
de la Cruz-Martínez F, Martínez de Sarasa Buchaca M, Martínez J, Tejeda J, Fernández-Baeza J, Alonso-Moreno C, Rodríguez AM, Castro-Osma JA, Lara-Sánchez A. Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes. Inorg Chem 2020; 59:8412-8423. [PMID: 32452688 DOI: 10.1021/acs.inorgchem.0c00835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel bimetallic zinc acetate complexes supported by heteroscorpionate ligands have been developed for the ring-opening copolymerization of cyclohexene oxide and CO2 and the terpolymerization of cyclohexene oxide, phthalic anhydride, and CO2. Heteroscorpionate ligands precursors L1-L3 were reacted with two equivalents of zinc acetate to afford the dinuclear zinc complexes [{Zn(κ3-bpzappe)}(μ-O2CCH3)3-{Zn(HO2CCH3)}] (1), [{Zn(κ3-bpzbdmape)}(μ-O2CCH3)3-{Zn(HO2CCH3)}] (2), and [{Zn(κ3-bpzbdeape)}(μ-O2CCH3)3{Zn(HO2CCH3)}] (3) in excellent yields. The molecular structure of these compounds was determined spectroscopically and confirmed by X-ray diffraction analysis. Zinc acetate complexes 1-3 were screened as catalysts for the copolymerization of cyclohexene oxide and CO2 to produce poly(cyclohexene)carbonate, and complex 3 was found to be the most active catalyst for this process in the absence of a cocatalyst. Furthermore, the terpolymerization of cyclohexene oxide, phthalic anhydride, and CO2 was studied using the combination of complex 3 and 4-dimethylaminopyridine as catalyst system yielding the corresponding polyester-polycarbonate materials.
Collapse
Affiliation(s)
- Felipe de la Cruz-Martínez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Marc Martínez de Sarasa Buchaca
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Javier Martínez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain.,Laboratorio de Quı́mica Inorgánica, Facultad de Quı́mica, Universidad Católica de Chile Casilla 306, Santiago-22 6094411, Chile
| | - Juan Tejeda
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Juan Fernández-Baeza
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Carlos Alonso-Moreno
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071-Albacete, Spain
| | - Ana M Rodríguez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - José A Castro-Osma
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071-Albacete, Spain
| | - Agustín Lara-Sánchez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| |
Collapse
|
31
|
Mechanism-inspired Design of Heterodinuclear Catalysts for Copolymerization of Epoxide and Lactone. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2413-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Soobrattee S, Zhai X, Nyamayaro K, Diaz C, Kelley P, Ebrahimi T, Mehrkhodavandi P. Dinucleating Amino-Phenolate Platform for Zinc Catalysts: Impact on Lactide Polymerization. Inorg Chem 2020; 59:5546-5557. [PMID: 32223228 DOI: 10.1021/acs.inorgchem.0c00250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report imine- and amine-based dinucleating ligands bearing a bisphenol backbone and explore their coordination chemistry with zinc to form zinc alkyl, alkoxide, acetate, and amide complexes. Full characterization of the complexes shows that this ligand framework can support dinuclear and trinuclear complexes. We explore the reactivity of the zinc alkyl and alkoxide complexes as catalysts for the ring opening polymerization of lactide and compared this reactivity to analogous mononuclear complexes. We show that 1) The amine-based complexes are more reactive than the imine-based analogues; 2) The trinuclear zinc alkyl species show unusual control and reproducibility for lactide polymerization; and 3) The extent of bimetallic cooperation is hampered by the ability of the ligand framework to form trinuclear clusters.
Collapse
Affiliation(s)
- Shazia Soobrattee
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xiaofang Zhai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kudzanai Nyamayaro
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Carlos Diaz
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Paul Kelley
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Tannaz Ebrahimi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
33
|
Santulli F, D’Auria I, Boggioni L, Losio S, Proverbio M, Costabile C, Mazzeo M. Bimetallic Aluminum Complexes Bearing Binaphthyl-Based Iminophenolate Ligands as Catalysts for the Synthesis of Polyesters. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Federica Santulli
- University of Salerno, Department of Chemistry and Biology “A. Zambelli”, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Ilaria D’Auria
- University of Salerno, Department of Chemistry and Biology “A. Zambelli”, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | | | - Simona Losio
- SCITEC-CNR, Via E. Bassini 15, 20133 Milano, Italy
| | | | - Chiara Costabile
- University of Salerno, Department of Chemistry and Biology “A. Zambelli”, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Mina Mazzeo
- University of Salerno, Department of Chemistry and Biology “A. Zambelli”, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
34
|
Cozzolino M, Melchionno F, Santulli F, Mazzeo M, Lamberti M. Aldimine‐Thioether‐Phenolate Based Mono‐ and Bimetallic Zinc Complexes as Catalysts for the Reaction of CO
2
with Cyclohexene Oxide. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mariachiara Cozzolino
- Department of Chemistry and Biology “Adolfo Zambell” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Flavia Melchionno
- Department of Chemistry and Biology “Adolfo Zambell” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Federica Santulli
- Department of Chemistry and Biology “Adolfo Zambell” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology “Adolfo Zambell” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Marina Lamberti
- Department of Chemistry and Biology “Adolfo Zambell” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| |
Collapse
|
35
|
Stößer T, Sulley GS, Gregory GL, Williams CK. Easy access to oxygenated block polymers via switchable catalysis. Nat Commun 2019; 10:2668. [PMID: 31209211 PMCID: PMC6572807 DOI: 10.1038/s41467-019-10481-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/08/2019] [Indexed: 01/02/2023] Open
Abstract
Oxygenated block polyols are versatile, potentially bio-based and/or degradable materials widely applied in the manufacture of coatings, resins, polyurethanes and other products. Typical preparations involve multistep syntheses and/or macroinitiator approaches. Here, a straightforward and well-controlled one-pot synthesis of ABA triblocks, namely poly(ether-b-ester-b-ether), and ABCBA pentablocks, of the form poly(ester-b-ether-b-ester’-b-ether-b-ester), using a commercial chromium catalyst system is described. The polymerization catalysis exploits mechanistic switches between anhydride/epoxide ring-opening copolymerization, epoxide ring-opening polymerization and lactone ring-opening polymerization without requiring any external stimuli. Testing a range of anhydrides, epoxides and chain-transfer agents reveals some of the requirements and guidelines for successful catalysis. Following these rules of switch catalysis with multiple monomer additions allows the preparation of multiblock polymers of the form (ABA)n up to 15 blocks. Overall, this switchable catalysis delivers polyols in a straightforward and highly controlled manner. As proof of potential for the materials, methods to post-functionalize and/or couple the polyols to make higher polymers are demonstrated. Multiblock oxygenated polyols often show better properties than the constituent polyols, but their synthesis can be complex and difficult. Here a switchable catalysis concept is described which allows for the efficient preparation of multiblock poly(ether-b-ester) materials starting from mixtures of common monomers.
Collapse
Affiliation(s)
- Tim Stößer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Gregory S Sulley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Georgina L Gregory
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
36
|
Hiranoi Y, Nakano K. Dinuclear Co-Salcy Complexes with a Dibenzofuran Linker for Copolymerizations of Epoxides with Cyclic Anhydrides or Carbon Dioxide. CHEM LETT 2019. [DOI: 10.1246/cl.190079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yo Hiranoi
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Nakano
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
37
|
Isnard F, Santulli F, Cozzolino M, Lamberti M, Pellecchia C, Mazzeo M. Tetracoordinate aluminum complexes bearing phenoxy-based ligands as catalysts for epoxide/anhydride copolymerization: some mechanistic insights. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00806c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenoxy-imine aluminum complexes, in combination with DMAP, produce efficient catalysts for the alternating copolymerization of epoxides and anhydrides. A zwitterionic species is formed in the initiation step.
Collapse
Affiliation(s)
- Florence Isnard
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 132 84084 Fisciano
- Italy
| | - Federica Santulli
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 132 84084 Fisciano
- Italy
| | - Mariachiara Cozzolino
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 132 84084 Fisciano
- Italy
| | - Marina Lamberti
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 132 84084 Fisciano
- Italy
| | - Claudio Pellecchia
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 132 84084 Fisciano
- Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 132 84084 Fisciano
- Italy
| |
Collapse
|
38
|
Clayman NE, Morris LS, LaPointe AM, Keresztes I, Waymouth RM, Coates GW. Dual catalysis for the copolymerisation of epoxides and lactones. Chem Commun (Camb) 2019; 55:6914-6917. [DOI: 10.1039/c9cc00493a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using a dual catalysis approach, epoxide/lactone copolymers were synthesized with control over tacticity, molecular weight, crystallinity, and comonomer content.
Collapse
Affiliation(s)
- Naomi E. Clayman
- Department of Chemistry, Stanford University
- Stanford
- California 94305-5080
- USA
| | | | - Anne M. LaPointe
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University
- Stanford
- California 94305-5080
- USA
| | | |
Collapse
|