1
|
Yu JW, Zhang CY, Chass GA, Zhang JX, Mu WH, Cao K. Pd-NHC catalysed regioselective activation of B(3,6)-H of o-carborane - a synergy between experiment and theory. Dalton Trans 2023; 52:10609-10620. [PMID: 37462420 DOI: 10.1039/d3dt01432k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Regioselective B-H activation of o-carboranes is an effective way for constructing o-carborane derivatives, which have broad applications in medicine, catalysis and the wider chemical industry. However, the mechanistic basis for the observed selectivities remains unresolved. Herein, a series of density functional theory (DFT) calculations were employed to characterise the palladium N-heterocyclic carbene (Pd-NHC) catalysed regioselective B(3,6)-diarylation of o-carboranes. Computational results at the IDSCRF(ether)-LC-ωPBE/BS1 and IDSCRF(ether)-LC-ωPBE/BS2 levels showed that the reaction undergoes a Pd(0) → Pd(II) → Pd(0) oxidation/reduction cycle, with the regioselective B(3)-H activation being the rate-determining step (RDS) for the full reaction profile. The computed RDS free energy barrier of 24.3 kcal mol-1 agrees well with the 82% yield of B(3,6)-diphenyl-o-carborane in ether solution at 298 K after 24 hours of reaction. The Ag2CO3 additive was shown to play a crucial role in lowering the RDS free energy barrier and facilitating the reaction. Natural charge population (NPA) and molecular surface electrostatic potential (ESP) analyses successfully predicted the experimentally observed regioselectivities, with electronic effects being revealed to be the dominant contributors to product selectivity. Steric hindrance was also shown to impact the reaction rate, as revealed by experimental and computational characterisation studies of substituents and ligand effects. Furthermore, computational predictions aligned with the experimental findings that NHC ligands outperform the phosphine ones for this particular reaction. Overall, the observed trends reported in this work are expected to assist in the rational optimisation of the efficiency and regioselectivity of this and related reactions.
Collapse
Affiliation(s)
- Jia-Wei Yu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650092, China.
| | - Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Gregory A Chass
- School of Physical and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK
- Department of Chemistry and Biological Chemistry, McMaster University, Hamilton, L8S 4L8, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Jing-Xuan Zhang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650092, China.
| | - Wei-Hua Mu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650092, China.
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
2
|
He H, Liu J, Wang T, Guo L, Zhang W, Chen X. Chemo- and regioselectivities of the TBAF-catalyzed C F bond allylation of trifluoromethylalkenes: A theoretical view. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Chen Z, Liu J, Liu J, Bao P, He H, Xia H, Zhang W. Unraveling origin of chemoselectivity and regioselectivity of iridium‐catalyzed B(4)–H functionalization of
o
‐carborane by alkyne. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zitong Chen
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Jiying Liu
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Jiabin Liu
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Panpan Bao
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Hailing He
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Hui Xia
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS Zhengzhou China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| |
Collapse
|
4
|
Dai C, Huang Y, Zhu J. Predicting Dinitrogen Activation by Carborane-Based Frustrated Lewis Pairs. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanyuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Zhang J, Xie Z. Advances in transition metal catalyzed selective B H functionalization of o-carboranes. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Liu J, Fu D, Chen Z, Li T, Qu LB, Li SJ, Zhang W, Lan Y. Regioselectivity of Pd-catalyzed o-carborane arylation: a theoretical view. Org Chem Front 2022. [DOI: 10.1039/d2qo00046f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
B(3)-Arylation is unfavorable because the steric repulsion between the substituent group on C(2) and the metal moiety would lead to significant distortion of o-carborane and would result in a higher activation energy for reductive elimination.
Collapse
Affiliation(s)
- Jiying Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongmin Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zitong Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tiantian Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| |
Collapse
|
7
|
Wen X, Zhou X, Li W, Du C, Ke Z, Zhao C. Mechanism of Counterion-Controlled Regioselective Hydrothiolation of 1,3-Dienes: Insights from a Density Functional Theory Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiuling Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Weikang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuofeng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
8
|
Xia H, Zhang W, Yang Y, Zhang W, Purchase D, Zhao C, Song X, Wang Y. Degradation mechanism of tris(2-chloroethyl) phosphate (TCEP) as an emerging contaminant in advanced oxidation processes: A DFT modelling approach. CHEMOSPHERE 2021; 273:129674. [PMID: 33571912 DOI: 10.1016/j.chemosphere.2021.129674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
As a typical toxic organophosphate and emerging contaminant, tris(2-chloroethyl) phosphate (TCEP) is resistant to conventional water treatment processes. Studies on advanced oxidation processes (AOPs) to degrade TCEP have received increasing attention, but the detailed mechanism is not yet fully understood. This study investigated the mechanistic details of TCEP degradation promoted by OH by using the density functional theory (DFT) method. Our results demonstrated that in the initial step, energy barriers of the hydrogen abstraction pathways were no more than 7 kcal/mol. Cleavage of the P-O or C-Cl bond was possible to occur, whilst the C-O or C-C cleavage had to overcome an energy barrier above 50 kcal/mol, which was too high for mild experimental conditions. The bond dissociation energy (BDE) combined with the distortion/interaction energy (DIE) analysis disclosed origin of the various reactivities of each site of TCEP. The systematic calculations on the transformation of products generated in the initial step showed remarkable exothermic property. The novel information at molecular level provides insight on how these products are generated and offers valuable theoretical guidance to help develop more effective AOPs to degrade TCEP or other emerging environmental contaminant.
Collapse
Affiliation(s)
- Hui Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Wenjing Zhang
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang, 110044, China; Key Laboratory of Groundwater Environment and Resources (Jilin University), Ministry of Education, Changchun, 130021, China.
| | - Wei Zhang
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, United Kingdom.
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University, The Burroughs, London, UK
| | - Chuanqi Zhao
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Yuanyuan Wang
- Key Laboratory of Groundwater Environment and Resources (Jilin University), Ministry of Education, Changchun, 130021, China
| |
Collapse
|
9
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021; 90:451-487. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
10
|
Guo J, Yang W, Zhang D, Wang SG, Wang X. Mechanistic Insights into Formation of All-Carbon Quaternary Centers via Scandium-Catalyzed C-H Alkylation of Imidazoles with 1,1-Disubstituted Alkenes. J Org Chem 2021; 86:4598-4606. [PMID: 33686862 DOI: 10.1021/acs.joc.0c03054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This density functional theory (DFT) study reveals a detailed plausible mechanism for the Sc-catalyzed C-H cycloaddition of imidazoles to 1,1-disubstituted alkenes to form all-carbon quaternary stereocenters. The Sc complex binds the imidazole substrate to enable deprotonative C2-H bond activation by the Sc-bound α-carbon to afford the active species. This complex undergoes intramolecular cyclization (C═C into Sc-imidazolyl insertion) with exo-selectivity, generating a β-all-carbon-substituted quaternary center in the polycyclic imidazole derivative. The Sc-bound α-carbon deprotonates the imidazole C2-H bond to deliver the product and regenerate the active catalyst, which is the rate-determining step. Calculations illuminate the electronic effect of the ancillary Cp ligand on the catalyst activity and reveal the steric bias caused by using a chiral catalyst that induce the enantioselectivity. The insights can have implications for advancing rare-earth metal-catalyzed C-H functionalization of imidazoles.
Collapse
Affiliation(s)
- Jiandong Guo
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Wu Yang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Dongju Zhang
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 1733, Denver, Colorado 80217-3364, United States
| |
Collapse
|
11
|
Au YK, Xie Z. Recent Advances in Transition Metal-Catalyzed Selective B-H Functionalization ofo-Carboranes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200366] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| |
Collapse
|
12
|
Li B, Huang D, Zhang T, Niu X, Liu J, Zhang W, Liu Y, Liu Z, Zhang P, Li J. Five lead(II) coordinated polymers assembled from asymmetric azoles carboxylate ligands: Synthesis, structures and fluorescence properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Wang Y, Khan MR, Niu X, Zhang W, Li Y, Li B, Hao Y, Li J, Liu Z. Synthesis, Structures, and Antibacterial Activities of Four Similar 1D Metal-organic Polymers with Different Metal Ions. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yufei Wang
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Misbha Rafiq Khan
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Xiaoge Niu
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Wenjing Zhang
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Yulin Li
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
| | - Bohan Li
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Yaping Hao
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Jinpeng Li
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Zhongyi Liu
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| |
Collapse
|
14
|
Wang Y, Lan Y. Mechanism and origin of diastereoselectivity of N-heterocyclic carbene-catalyzed cross-benzoin reaction: A DFT study. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Wang Y, Qu L, Lan Y, Wei D. Origin of Regio‐ and Stereoselectivity in the NHC‐catalyzed Reaction of Alkyl Pyridinium with Aliphatic Enal. ChemCatChem 2019. [DOI: 10.1002/cctc.201901965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Wang
- Department of Material and Chemical EngineeringZhengzhou University of Light Industry 136 Science Avenue 450001 Zhengzhou, Henan province P. R. China
| | - Ling‐Bo Qu
- College of ChemistryZhengzhou University 100 Science Avenue 450002 Zhengzhou, Henan province P. R. China
| | - Yu Lan
- College of ChemistryZhengzhou University 100 Science Avenue 450002 Zhengzhou, Henan province P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University
| | - Donghui Wei
- College of ChemistryZhengzhou University 100 Science Avenue 450002 Zhengzhou, Henan province P. R. China
| |
Collapse
|
16
|
Li X, Sun L, Zhang Q, Li S, Wang Y, Wei D, Zhang W, Lan Y. Mechanism and Substituent Effects of Benzene Arylation via a Phenyl Cation Strategy: A Density Functional Theory Study. ChemCatChem 2019. [DOI: 10.1002/cctc.201901120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoyan Li
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Ling Sun
- Basic Teaching DepartmentHuanghe Jiaotong University Jiaozuo, Henan Province 454950 P. R. China
| | - Qiaochu Zhang
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Shijun Li
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Yang Wang
- Department of Material and Chemical EngineeringZhengzhou University of Light Industry 136 Science Avenue Zhengzhou, Henan Province 450002 P.R. China
| | - Donghui Wei
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Wenjing Zhang
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Yu Lan
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| |
Collapse
|
17
|
Unravelling the Mechanism and Selectivity of the NHC‐catalyzed Three‐Membered Ring‐Opening/Fluorination of Epoxy Enals: A DFT Study. ChemCatChem 2019. [DOI: 10.1002/cctc.201900424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Bai H, Zhang H, Zhang X, Wang L, Li S, Wei D, Zhu Y, Zhang W. Unravelling the Origins of Hydroboration Chemoselectivity Inversion Using an N,O-Chelated Ir(I) Complex: A Computational Study. J Org Chem 2019; 84:6709-6718. [DOI: 10.1021/acs.joc.9b00329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huining Bai
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Huimin Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Xinchao Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Lidong Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Shijun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| |
Collapse
|
19
|
Gao J, Wang Y. Mechanistic studies on the N-heterocyclic carbene-catalyzed reaction of isatin-derived enals with hydrazones. Org Biomol Chem 2019; 17:7442-7447. [DOI: 10.1039/c9ob01317b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The detailed mechanism and origin of stereoselectivity of the NHC-catalyzed annulation reaction were investigated.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Cooking Food
- Henan Polytechnic
- Zhengzhou
- P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| |
Collapse
|
20
|
Quan Y, Xie Z. Controlled functionalization of o-carborane via transition metal catalyzed B–H activation. Chem Soc Rev 2019; 48:3660-3673. [DOI: 10.1039/c9cs00169g] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes recent advances in transition metal catalyzed vertex-specific BH functionalization of o-carborane for controlled synthesis of its derivatives.
Collapse
Affiliation(s)
- Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- New Territories
- China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- New Territories
- China
| |
Collapse
|
21
|
Bai H, Zhang H, Guo Y, Chen H, Wei D, Li S, Zhu Y, Zhang W. Understanding theZselectivity of the metal-free intermolecular aminoarylation of alkynes: a DFT study. Org Chem Front 2019. [DOI: 10.1039/c8qo01093e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The unusualZselectivity of the title reaction is revealed to be determined by the inherent requirements of dynamic preference of pathways that promise theZ-geometry product, rather than the isomerization of theE-productin situ.
Collapse
Affiliation(s)
- Huining Bai
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Huimin Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yuen Guo
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Hui Chen
- Institute of Chemistry, Henan Academy of Sciences
- Zhengzhou 450002
- P.R. China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Shijun Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
22
|
Wang Y, Qu L, Wei D. Prediction on the Origin of Selectivities in Base‐controlled Switchable NHC‐catalyzed Transformations. Chem Asian J 2018; 14:293-300. [DOI: 10.1002/asia.201801583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/28/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yang Wang
- Department of Material and Chemical EngineeringZhengzhou University of Light Industry 136 Science Avenue Zhengzhou Henan Province 450002 P. R. China
| | - Ling‐Bo Qu
- College of Chemistry and Molecular EngineeringZhengzhou University 100 Science Avenue Zhengzhou Henan Province 450002 P. R. China
| | - Donghui Wei
- College of Chemistry and Molecular EngineeringZhengzhou University 100 Science Avenue Zhengzhou Henan Province 450002 P. R. China
| |
Collapse
|