1
|
Huang S, Li J, Wang X, Kang Y, Zhao Y, Wang H, Zhang P, Zhang L, Zhao C. Boosting the Electrocatalytic Formic Acid Oxidation Activity via P-PdAuAg Quaternary Alloying. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36916029 DOI: 10.1021/acsami.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct formic acid fuel cells (DFAFCs) are considered promising sustainable power sources due to their high energy density, nonflammability, and low fuel crossover. However, serious CO poisoning and activity attenuation of the anodic formic acid oxidation reaction (FAOR) greatly restrict the output and durability of DFAFCs. Inspired by the specific relationship between the composition, type, and property of alloys, in this work, we synthesize a series of hybrid substitutional/interstitial quaternary alloys P-PdAuAg by means of a novel polyphosphide route to address these issues. Due to the simultaneous interstitial P-doping and metal (Au, Ag, Pd) co-reduction, the P-PdAuAg quaternary alloy obtained is only 3 nm in diameter with abundant defects. It not only achieves a new high mass activity of 8.08 A mgPd-1 (6.78 A mgcatalyst-1) but also maintains high stability in the high potential range and harsh reaction conditions. Both the activity and anti-poisoning ability are far exceeding those of the currently reported FAOR catalysts. Detailed density functional theory (DFT) calculations reveal that the superb electrochemical performances originate from the shift of the d-band center of Pd as a result of the synergistic electronic/ligand effects between Pd, Au, Ag, and P. The introduction of interstitial P inhibits the occurrence of an indirect reaction pathway on Pd, while Au and Ag suppress the adsorption of CO and optimize the sequential dehydrogenation steps, leading to boosted reaction kinetics and CO tolerance. This work pioneered a facile way for the synthesis of Pd-based substitutional/interstitial hybrid alloys, providing a promising means of further improving the performance of alloying catalysts.
Collapse
Affiliation(s)
- Shuke Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Xiaosha Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yongshuai Kang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yongjian Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Hu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| |
Collapse
|
2
|
Chemically prepared Pd-Cd alloy nanocatalysts as the highly active material for formic acid electrochemical oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022; 22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Direct formic acid fuel cells (DFAFCs) have gained immense importance as a source of clean energy for portable electronic devices. It outperforms other fuel cells in several key operational and safety parameters. However, slow kinetics of the formic acid oxidation at the anode remains the main obstacle in achieving a high power output in DFAFCs. Noble metal-based electrocatalysts are effective, but are expensive and prone to CO poisoning. Recently, a substantial volume of research work have been dedicated to develop inexpensive, high activity and long lasting electrocatalysts. Herein, recent advances in the development of anode electrocatalysts for DFAFCs are presented focusing on understanding the relationship between activity and structure. This review covers the literature related to the electrocatalysts based on noble metals, non-noble metals, metal-oxides, synthesis route, support material, and fuel cell performance. The future prospects and bottlenecks in the field are also discussed at the end.
Collapse
Affiliation(s)
- S K Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - M Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Faisal A Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Liu J, Li F, Zhong C, Hu W. Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. MATERIALS 2022; 15:ma15041554. [PMID: 35208094 PMCID: PMC8879612 DOI: 10.3390/ma15041554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023]
Abstract
Pd–Pt bimetallic catalysts with a dendritic morphology were in situ synthesized on the surface of a carbon paper via the facile and surfactant-free two step electrochemical method. The effects of the frequency and modification time of the periodic square-wave potential (PSWP) on the morphology of the Pd–Pt bimetallic catalysts were investigated. The obtained Pd–Pt bimetallic catalysts with a dendritic morphology displayed an enhanced catalytic activity of 0.77 A mg−1, almost 2.5 times that of the commercial Pd/C catalyst reported in the literature (0.31 A mg−1) in acidic media. The enhanced catalytic activity of the Pd–Pt bimetallic catalysts with a dendritic morphology towards formic acid oxidation reaction (FAOR) was not only attributed to the large number of atomic defects at the edges of dendrites, but also ascribed to the high utilization of active sites resulting from the “clean” electrochemical preparation method. Besides, during chronoamperometric testing, the current density of the dendritic Pd–Pt bimetallic catalysts for a period of 3000 s was 0.08 A mg−1, even four times that of the commercial Pd/C catalyst reported in the literature (about 0.02 A mg−1).
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (J.L.); (F.L.); (W.H.)
| | - Fangchao Li
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (J.L.); (F.L.); (W.H.)
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (J.L.); (F.L.); (W.H.)
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Correspondence:
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (J.L.); (F.L.); (W.H.)
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
5
|
Huang S, Li J, Chen Y, Yan L, Zhang P, Zhang X, Zhao C. Boosting the anti-poisoning ability of palladium towards electrocatalytic formic acid oxidation via polyphosphide chemistry. J Colloid Interface Sci 2022; 615:366-374. [PMID: 35149350 DOI: 10.1016/j.jcis.2022.01.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
In this work, we reported a novel polyphosphide strategy for the synthesis of phosphorus doped Pd (P-Pd) using red phosphorus as the starting material at quasi-ambient conditions. Polyphophide anions, as the key reaction intermediates, served as the reducing agent and phosphorus source to modulate the surface electronic structure of Pd. The P-Pd obtained exhibited topmost CO tolerance and electrocatalytic activity to formic acid oxidation among the state-of-arts reports. The mass activity and turnover frequency of P-Pd reached 4413 mA mg-1Pd and 16.04 s-1 at 0.8 V, which were 23.7 and 6.4 times that of commercial Pd/C respectively. After 1000 repeated cycles, 82% initial activity was reserved. Combined with the electrochemical analysis and the density functional theory calculation, the boosted electrochemical performances can be attributed to the size and electronic effects induced by the P doping, which increase the surface actives sites, inhibit the adsorption of CO and change the reaction pathway to favorable CO2 route. A full cell was also assembled to demonstrate the practical potential of the P-Pd, which showed a maximum power density of 21.56 mW cm-2. This polyphophide-based reaction route provides a new strategy for the preparation of efficient and durable phosphorus doped alloys for electrocatalysis.
Collapse
Affiliation(s)
- Shuke Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yilan Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Liwei Yan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Xueyan Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|
6
|
Molecular dynamics study on structural and atomic evolution between Au and Ni nanoparticles through coalescence. Sci Rep 2021; 11:15432. [PMID: 34326385 PMCID: PMC8322430 DOI: 10.1038/s41598-021-94822-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Motivated by the structure evolution experiments of Janus NiAu nanoparticles (NPs), we present a detailed study on the thermodynamic evolution of Ni and Au NPs with different ratios of Au and Ni through the molecular dynamics (MD) simulations. It is found that, for fixed Ni particle size (5.8 nm in diameter), the energy variation with the increasing temperature is related to the Au sizes (1.5–9.6 nm in diameter), due to the diverse atomic segregation modes. For a small Au particle, due to lattice induction, the structure will change from order to disorder and then to order. The interface defects of the merging NPs could be automatically eliminated by coalescence processes. The change in energy as the temperature increases is similar to that of monometallic NPs. For larger Au particles, the irregular variation of energy occurs and the atomic energy experience one or two reductions at least with the increase of the temperature. The segregation of Au atoms to the surface of Ni particle is dominant during the continuous heating process. The coalescence processes of Au atoms strongly determine the final morphology of the particles. Dumbbell-like, Janus and eccentric core–shell spherical structures could be obtained during the heating process. Our results will provide an effective approach to the design of novel materials with specific properties through thermal control.
Collapse
|
7
|
Velpula VRK, Peesapati S, Enumula SS, Burri DR, Ketike T, Narani A. Biomass waste rice husk derived silica supported palladium nanoparticles: an efficient catalyst for Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03920-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Methane activation on PdMn/C-ITO electrocatalysts using a reactor-type PEMFC. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04210-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Huang Y, Ge S, Chen X, Xiang Z, Zhang X, Zhang R, Cui Y. Hierarchical FeCo
2
S
4
@FeNi
2
S
4
Core/Shell Nanostructures on Ni Foam for High‐Performance Supercapacitors. Chemistry 2019; 25:14117-14122. [DOI: 10.1002/chem.201902868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yunxia Huang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Shuaipeng Ge
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Xiaojuan Chen
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Zhongcheng Xiang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Xinran Zhang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Ruoxuan Zhang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Yimin Cui
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| |
Collapse
|