1
|
Vaghi F, Facchetti G, Rimoldi I, Bottiglieri M, Contini A, Gelmi ML, Bucci R. Highly efficient morpholine-based organocatalysts for the 1,4-addition reaction between aldehydes and nitroolefins: an unexploited class of catalysts. Front Chem 2023; 11:1233097. [PMID: 37638101 PMCID: PMC10451084 DOI: 10.3389/fchem.2023.1233097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Many studies have demonstrated how the pyrrolidine nucleus is more efficient than the corresponding piperidine or morpholine as organocatalysts in the condensation of aldehydes with electrophiles via enamine. Focussing on morpholine-enamines, their low reactivity is ascribed to the presence of oxygen on the ring and to the pronounced pyramidalisation of nitrogen, decreasing the nucleophilicity of the enamine. Thus, the selection of efficient morpholine organocatalysts appears to be a difficult challenge. Herein, we reported on the synthesis of new organocatalysts belonging to the class of ß-morpholine amino acids that were tested in a model reaction, i.e., the 1,4-addition reaction of aldehydes to nitroolefins. Starting from commercially available amino acids and epichlorohydrin, we designed an efficient synthesis for the aforementioned catalysts, controlling the configuration and the substitution pattern. Computational studies indeed disclosed the transition state of the reaction, explaining why, despite all the limitations of the morpholine ring for enamine catalysis, our best catalyst works efficiently, affording condensation products with excellent yields, diastereoselection and good-to-exquisite enantioselectivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, DISFARM, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Łukasik B, Romaniszyn M, Kłoszewski N, Albrecht Ł. Asymmetric Organocatalysis in the Remote (3 + 2)-Cycloaddition to 4-(Alk-1-en-1-yl)-3-cyanocoumarins. Org Lett 2023; 25:3728-3732. [PMID: 37186962 DOI: 10.1021/acs.orglett.3c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The application of organocatalytic bifunctional activation in the remote (3 + 2)-cycloaddition between 4-(alk-1-en-1-yl)-3-cyanocoumarins and imines derived from salicylaldehyde is demonstrated. Products, bearing two biologically relevant units, have been obtained with good chemical and stereochemical efficiency. The stereochemical outcome of the process results from the application of a quinine-derived catalyst. Selected transformations of the cycloadducts leading to further chemical diversity have been demonstrated.
Collapse
Affiliation(s)
- Beata Łukasik
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marta Romaniszyn
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Nathan Kłoszewski
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
3
|
Bhat AA, Singh I, Tandon N, Tandon R. Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). Eur J Med Chem 2023; 246:114954. [PMID: 36481599 DOI: 10.1016/j.ejmech.2022.114954] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Pyrrolidine molecules are a significant class of synthetic and natural plant metabolites, which show the diversity of pharmacological activities. An extensive variety of synthetic pyrrolidine compounds with numerous derivatization like spirooxindole, thiazole, metal complexes, coumarin, etc have revealed significant anticancer activity. Pyrrolidine molecules are found not only as potential anticancer candidates but also retain the lowest side effects. Depending upon the diverse substitution patterns of the derivatives, these molecules have demonstrated an incredible ability to regulate the various targets to give excellent anti-proliferative activities. Taking these into consideration, efforts have been taken by the scientific fraternity to design and develop a potent anticancer scaffold with negligible side effects. In the present review, we cover the latest advancements in the synthesis of pyrrolidine molecules which have promising anticancer activity toward numerous cancer cell lines. Additionally, it also highlights the effectiveness of derivatives via elucidation of Structural-Activity-Relationship (SAR) which is discussed in detail.
Collapse
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Nitin Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| | - Runjhun Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
4
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
5
|
Bhat AA, Tandon N, Tandon R. Pyrrolidine Derivatives as Anti‐diabetic Agents: Current Status and Future Prospects. ChemistrySelect 2022. [DOI: 10.1002/slct.202103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Nitin Tandon
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Runjhun Tandon
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| |
Collapse
|
6
|
Llopis S, Velty A, Díaz U. Active Base Hybrid Organosilica Materials based on Pyrrolidine Builder Units for Fine Chemicals Production. ChemCatChem 2021. [DOI: 10.1002/cctc.202101031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastián Llopis
- Instituto de Tecnología Química Universitat Politècnica de València Consejo Superior de Investigaciones Científicas Avenida de los Naranjos s/n E-46022 Valencia Spain
| | - Alexandra Velty
- Instituto de Tecnología Química Universitat Politècnica de València Consejo Superior de Investigaciones Científicas Avenida de los Naranjos s/n E-46022 Valencia Spain
| | - Urbano Díaz
- Instituto de Tecnología Química Universitat Politècnica de València Consejo Superior de Investigaciones Científicas Avenida de los Naranjos s/n E-46022 Valencia Spain
| |
Collapse
|
7
|
Li Petri G, Raimondi MV, Spanò V, Holl R, Barraja P, Montalbano A. Pyrrolidine in Drug Discovery: A Versatile Scaffold for Novel Biologically Active Compounds. Top Curr Chem (Cham) 2021; 379:34. [PMID: 34373963 PMCID: PMC8352847 DOI: 10.1007/s41061-021-00347-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/25/2021] [Indexed: 01/24/2023]
Abstract
The five-membered pyrrolidine ring is one of the nitrogen heterocycles used widely by medicinal chemists to obtain compounds for the treatment of human diseases. The great interest in this saturated scaffold is enhanced by (1) the possibility to efficiently explore the pharmacophore space due to sp3-hybridization, (2) the contribution to the stereochemistry of the molecule, (3) and the increased three-dimensional (3D) coverage due to the non-planarity of the ring-a phenomenon called "pseudorotation". In this review, we report bioactive molecules with target selectivity characterized by the pyrrolidine ring and its derivatives, including pyrrolizines, pyrrolidine-2-one, pyrrolidine-2,5-diones and prolinol described in the literature from 2015 to date. After a comparison of the physicochemical parameters of pyrrolidine with the parent aromatic pyrrole and cyclopentane, we investigate the influence of steric factors on biological activity, also describing the structure-activity relationship (SAR) of the studied compounds. To aid the reader's approach to reading the manuscript, we have planned the review on the basis of the synthetic strategies used: (1) ring construction from different cyclic or acyclic precursors, reporting the synthesis and the reaction conditions, or (2) functionalization of preformed pyrrolidine rings, e.g., proline derivatives. Since one of the most significant features of the pyrrolidine ring is the stereogenicity of carbons, we highlight how the different stereoisomers and the spatial orientation of substituents can lead to a different biological profile of drug candidates, due to the different binding mode to enantioselective proteins. We believe that this work can guide medicinal chemists to the best approach in the design of new pyrrolidine compounds with different biological profiles.
Collapse
Affiliation(s)
- Giovanna Li Petri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ralph Holl
- Department of Chemistry, Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
8
|
Debnath MK, Oyama W, Ono Y, Sugimoto T, Watanabe R, Haraguchi N. Synthesis of polymer microsphere‐supported chiral pyrrolidine catalysts by precipitation polymerization and their application to asymmetric Michael addition reactions. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mithun Kumar Debnath
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Wako Oyama
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Yuya Ono
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Takuya Sugimoto
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Rina Watanabe
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Naoki Haraguchi
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| |
Collapse
|
9
|
Abstract
Hybrid organic-inorganic catalysts have been extensively investigated by several research groups in the last decades, as they allow combining the structural robust-ness of inorganic solids with the versatility of organic chemistry. Within the field of hybrid catalysts, synthetic strategies based on silica are among the most exploitable, due to the convenience of sol-gel chemistry, to the array of silyl-derivative precursors that can be synthesized and to the number of post-synthetic functionalization strategies available, amongst others. This review proposes to highlight these advantages, firstly describing the most common synthetic tools and the chemistry behind sol-gel syntheses of hybrid catalysts, then presenting exemplificative studies involving mono- and multi-functional silica-based hybrid catalysts featuring different types of active sites (acid, base, redox). Materials obtained through different approaches are described and their properties, as well as their catalytic performances, are compared. The general scope of this review is to gather useful information for those approaching the synthesis of organic-inorganic hybrid materials, while providing an overview on the state-of-the art in the synthesis of such materials and highlighting their capacities.
Collapse
|
10
|
Castro-Alvarez A, Carneros H, Calafat J, Costa AM, Marco C, Vilarrasa J. NMR and Computational Studies on the Reactions of Enamines with Nitroalkenes That May Pass through Cyclobutanes. ACS OMEGA 2019; 4:18167-18194. [PMID: 31720519 PMCID: PMC6844152 DOI: 10.1021/acsomega.9b02074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The addition of aldehyde enamines to nitroalkenes affords cyclobutanes in all solvents, with all of the pyrrolidine and proline derivatives tested by us and with all of the substrates we have examined. Depending on the temperature, concentration of water, solvent polarity, and other factors, the opening and hydrolysis of such a four-membered ring may take place rapidly or last for several days, producing the final Michael-like adducts (4-nitrobutanals). Thirteen new cyclobutanes have now been characterized by NMR spectroscopy. As could be expected, s-trans-enamine conformers give rise to all-trans-(4S)-4-nitrocyclobutylpyrrolidines, while s-cis-enamine conformers afford all-trans-(4R)-4-nitrocyclobutylpyrrolidines. These four-membered rings can isomerize to adduct enamines, which should be hydrolyzed via their iminium ions. MP2 and M06-2X calculations predict that one iminium ion is more stable than the other iminium species, so that protonation of the adduct enamines can be quite stereoselective; in the presence of water, the so-called syn adducts (e.g., OCH-*CHR-*CHPh-CH2NO2, with R and Ph syn) eventually become the major products. Why one syn adduct is obtained with aldehydes, whereas cyclic ketones (the predicted ring-fused cyclobutanes of which isomerize to their enamines more easily) produce the other syn adduct, is also explained by means of molecular orbital calculations. Nitro-Michael reactions of aldehyde enamines that "stop" at the nitrocyclobutane stage and final enamine stage do not work catalytically, as known, but those of cyclic ketone enamines that do not work stop at the final enamine stage (if their hydrolysis to the corresponding nitroethylketones is less favorable than expected). These and other facts are accounted for, and the proposals of the groups led by Seebach and Hayashi, Blackmond, and Pihko and Papai are reconciled.
Collapse
|
11
|
Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas. Catalysts 2019. [DOI: 10.3390/catal9080654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Three families of organosiliceous materials with different structuration level, order, and textural properties (non-ordered, M41S, and SBA-15 type materials) were prepared incorporating in their structural framework chiral pyrrolidine units with variable content. Likewise, non-ordered mesoporous hybrid solids were obtained through a sol-gel process in a fluoride medium, while M41S and SBA-15 type materials were obtained through micellar routes in the presence of long-chain neutral surfactants or block copolymers. Thanks to appropriate characterization studies and catalytic tests for the Michael addition between butyraldehyde and β-nitrostyrene, we showed how the void shapes and sizes present in the structure of hybrid materials control the diffusion of reactants and products, as well as confine transition states and reactive intermediates. The best catalytic results, considering activity and enantioselectivity, were achieved in the presence of a non-ordered material, NOH-Pyr-5%, which exhibited the highest Brunauer-Emmett-Teller (BET) area, with a 96% yield and a 82% ee for the Michael adduct.
Collapse
|
12
|
Erigoni A, Paul G, Meazza M, Hernández-Soto MC, Miletto I, Rios R, Segarra C, Marchese L, Raja R, Rey F, Gianotti E, Díaz U. Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01609k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid heterogeneous catalysts containing (fluoro)aryl-sulfonic groups were characterized through combined spectroscopic techniques and adsorption of probe molecules, with their reactivity being modulated for acetal formation.
Collapse
|