1
|
Dinh HM, Gridneva T, Karimata A, Garcia-Roca A, Pruchyathamkorn J, Patil PH, Petrov A, Sarbajna A, Lapointe S, Khaskin E, Fayzullin RR, Khusnutdinova JR. Single and double deprotonation/dearomatization of the N,S-donor pyridinophane ligand in ruthenium complexes. Dalton Trans 2022; 51:14734-14746. [PMID: 36106442 DOI: 10.1039/d2dt02219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a series of ruthenium complexes with a tetradentate N,S-donor ligand, 2,11-dithia[3.3](2,6)pyridinophane (N2S2), that undergo single and double deprotonation in the presence of a base leading to the deprotonation of one or both pyridine rings. Both singly and doubly deprotonated complexes were structurally characterized by single-crystal X-ray diffraction. The NMR spectra are indicative of the dearomatization of one or both pyridine rings upon the deprotonation of the CH2-S arm, similar to the dearomatization of phosphine-containing pincer ligands. The deprotonated (N2S2)Ru complexes did not show appreciable catalytic or stoichiometric reactivity in transfer hydrogenation, hydrogenation and dehydrogenation of alcohols, and attempted activation of H2, CO2, and other substrates. Such a lack of reactivity is likely due to the low stability of the deprotonated species as evident from the structural characterization of one of the decomposition products in which shrinkage of the macrocyclic ring occurs via picolyl arm migration.
Collapse
Affiliation(s)
- Hoan Minh Dinh
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Ayumu Karimata
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Alèria Garcia-Roca
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Jiratheep Pruchyathamkorn
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Pradnya H Patil
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Andrey Petrov
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Abir Sarbajna
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Sébastien Lapointe
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
2
|
Timelthaler D, Schöfberger W, Topf C. Selective and Additive-Free Hydrogenation of Nitroarenes Mediated by a DMSO-Tagged Molecular Cobalt Corrole Catalyst. European J Org Chem 2021; 2021:2114-2120. [PMID: 34248412 PMCID: PMC8252576 DOI: 10.1002/ejoc.202100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Indexed: 12/02/2022]
Abstract
We report on the first cobalt corrole that effectively mediates the homogeneous hydrogenation of structurally diverse nitroarenes to afford the corresponding amines. The given catalyst is easily assembled prior to use from 4-tert-butylbenzaldehyde and pyrrole followed by metalation of the resulting corrole macrocycle with cobalt(II) acetate. The thus-prepared complex is self-contained in that the hydrogenation protocol is free from the requirement for adding any auxiliary reagent to elicit the catalytic activity of the applied metal complex. Moreover, a containment system is not required for the assembly of the hydrogenation reaction set-up as both the autoclave and the reaction vessels are readily charged under a regular laboratory atmosphere.
Collapse
Affiliation(s)
- Daniel Timelthaler
- Institute of Catalysis (INCA)Johannes Kepler University (JKU)4040LinzAustria
| | | | - Christoph Topf
- Institute of Catalysis (INCA)Johannes Kepler University (JKU)4040LinzAustria
| |
Collapse
|
3
|
Panda S, Saha R, Sethi S, Ghosh R, Bagh B. Efficient α-Alkylation of Arylacetonitriles with Secondary Alcohols Catalyzed by a Phosphine-Free Air-Stable Iridium(III) Complex. J Org Chem 2020; 85:15610-15621. [PMID: 33197191 DOI: 10.1021/acs.joc.0c02400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A well-defined and readily available air-stable dimeric iridium(III) complex catalyzed α-alkylation of arylacetonitriles using secondary alcohols with the liberation of water as the only byproduct is reported. The α-alkylations were efficiently performed at 120 °C under solvent-free conditions with very low (0.1-0.01 mol %) catalyst loading. Various secondary alcohols including cyclic and acyclic alcohols and a wide variety of arylacetonitriles bearing different functional groups were converted into the corresponding α-alkylated products in good yields. Mechanistic study revealed that the reaction proceeds via alcohol activation by metal-ligand cooperation with the formation of reactive iridium-hydride species.
Collapse
Affiliation(s)
- Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
5
|
Hervochon J, Dorcet V, Junge K, Beller M, Fischmeister C. Convenient synthesis of cobalt nanoparticles for the hydrogenation of quinolines in water. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00582g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Easily accessible cobalt nanoparticles are prepared by hydrolysis of NaBH4 in the presence of inexpensive Co(ii) salts.
Collapse
Affiliation(s)
- Julien Hervochon
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Vincent Dorcet
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Kathrin Junge
- Leibniz-Institut für Katalyse
- Albert-Einstein-Straße 29a
- Rostock
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse
- Albert-Einstein-Straße 29a
- Rostock
- Germany
| | - Cedric Fischmeister
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|