1
|
Seung No H, Sim M, Shin IS, Kim J, Hong JI. Photoluminescent and Electrochemiluminescent Detection of Fe 3+ Using Cyclometalated Iridium Complexes via Fe 3+-Catalyzed Hydrolysis. Chem Asian J 2025; 20:e202400805. [PMID: 39385591 DOI: 10.1002/asia.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ferric ion (Fe3+) is a biologically abundant and important metal ion. We developed several cyclometalated iridium complex-based molecular sensors (1, ppy-1, 1-phen, 1 a, and 1_OMe) for the detection of Fe3+ using an acetal moiety as the reaction site. The acetal moiety in iridium complexes undergoes Fe3+-catalyzed hydrolysis and subsequent formation of a formyl group, resulting in turn-off photoluminescent and electrochemiluminescent responses. Sensor 1 showed excellent selectivity toward Fe3+ over other biologically important metal ions. Furthermore, we compared the performance of the sensors based on the structural differences of the iridium complexes, and revealed a relationship between the structure and chemical properties through electrochemical experiments and computational calculations.
Collapse
Affiliation(s)
- Hyun Seung No
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Minhee Sim
- Department of Chemistry, Research Institute for Basic Sciences, KHU-KIST, Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Ik-Soo Shin
- Department of Chemistry, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, South Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, KHU-KIST, Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
2
|
Kim KR, Oh J, Hong JI. A photoluminescent and electrochemiluminescent probe based on an iridium(III) complex with a boronic acid-functionalised ancillary ligand for the selective detection of mercury(II) ions. Analyst 2023; 148:5619-5626. [PMID: 37840468 DOI: 10.1039/d3an01266b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exposure to mercury(II) ions (Hg2+) can cause various diseases such as Minamata disease, acrodynia, Alzheimer's disease, and Hunter-Russell syndrome, and even organ damage. Therefore, real-time and accurate monitoring of Hg2+ in environmental samples is crucial. In this study, we report a photoluminescent (PL) and electrochemiluminescent (ECL) probe based on a cyclometalated Ir(III) complex for the selective detection of Hg2+. The introduction of a reaction site, o-aminomethylphenylboronic acid, on the ancillary ligands allowed a prompt transmetalation reaction to take place between Hg2+ and boronic acid. This reaction resulted in significant decreases of the PL and ECL signals due to the photo-induced electron transfer from the Ir(III) complex to the Hg2+ ions. The probe was applied to the selective detection of Hg2+, and the signal changes revealed a linear correlation with Hg2+ concentrations in the range of 0-10 μM (LOD = 0.72 μM for PL, 8.03 nM for ECL). The designed probe allowed the successful quantification of Hg2+ in tap water samples, which proves its potential for the selective detection of Hg2+ in environmental samples.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Jinrok Oh
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| |
Collapse
|
3
|
Martínez-Junquera M, Lalinde E, Moreno MT. cis/ trans-[Pt(C ∧N)(C≡CR)(CNBu t)] Isomers: Synthesis, Photophysical, DFT Studies, and Chemosensory Behavior. Inorg Chem 2023; 62:11849-11868. [PMID: 37458185 PMCID: PMC10394665 DOI: 10.1021/acs.inorgchem.3c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
cis/trans Isomerism can be a crucial factor for photophysical properties. Here, we report the synthesis and optical properties of a series of trans- and cis-alkynyl/isocyanide cycloplatinated compounds [Pt(C∧N)(C≡CR)(CNBut)] [R = C6H4-4-OMe 1, 3-C4H3S 2; C∧N = 2-(2,4-difluorophenyl)pyridine (dfppy) (a), 4-(2-pyridyl)benzaldehyde (ppy-CHO) (b)]. The trans-forms do not isomerize thermally in MeCN solution to the cis forms, but upon photochemical irradiation in this medium at 298 K, a variable isomerization to the cis forms was observed. This behavior is in good agreement with the theoretically calculated energy values. The trans/cis configuration, the identity of the cyclometalated, and the alkynyl ligand influence on the absorption and emission properties of the complexes in solution, polystyrene (PS) films, and solid state are reported. All complexes are efficient triplet emitters in all media (except for trans-1a and trans-2a in CH2Cl2 solution at 298 K), with emission wavelengths depending mainly on the cyclometalated ligand in the region 473-490 nm (dfppy), 510-550 (ppy-CHO), and quantum yields (ϕ) ranging from 18.5 to 40.7% in PS films. The combined photophysical data and time-dependent density functional theory calculations (TD-DFT) at the excited-state T1 geometry reveal triplet excited states of 3L'LCT (C≡CR → C∧N)/3IL (C∧N) character with minor 3MLCT contribution. The dfppy (a) complexes show a greater tendency to aggregate in rigid media than the ppy-CHO (b) and the cis with respect to the trans, showing red-shifted structureless bands of 3MMLCT and/or excimer-like nature. Interestingly, trans-1a,2a and cis-1a,2a undergo significant changes in the ultraviolet (UV) and emission spectra with Hg2+ ions enabling their use for sensing of Hg2+ ions in solution. This is clearly shown by the hypsochromic shift and substantial decrease of the low-energy absorption band and an increase of the intensity of the emission in the MeCN solution upon the addition of a solution of Hg(ClO4)2 (1:5 molar ratio). Job's plot analysis estimated a 1:1 stoichiometry in the complexation mode of Hg2+ by trans-2a. The binding constant (log K) calculated for this system from absorption titration data resulted to be 2.56, and the limit of the detection (LOD) was 6.54 × 10-7 M.
Collapse
Affiliation(s)
- Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
4
|
A chemodosimeter with high selectivity for ratiometric detection of mercury ions in buffer solution. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Wang G, Zhang S, Cui J, Gao W, Rong X, Lu Y, Gao C. Novel highly selective fluorescence sensing strategy for Mercury(Ⅱ) in water based on nitrogen-doped carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122010. [PMID: 36308826 DOI: 10.1016/j.saa.2022.122010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
In this work, a fluorescent signal-closing probe of nitrogen-doped carbon quantum dots (NCQDs) was developed for quantitative detection of mercury ions (Hg2+). In this detection system, the NCQDs with high quantum yield (QY, 63.80 %) were synthesized via simple hydrothermal method with Methyl Glycine Diacetic acid Trisodium Salt (MGDA) and m-phenylenediamine (MPD) as carbon and nitrogen sources. The NCQDs have a typical surface structure and exceptional fluorescence stability, and their fluorescence zones are centered on excitation wavelengths of 440 nm and emission wavelengths of 510 nm. Under optimal conditions, the NCQDs have outstanding anti-interference ability to various ions and high selectivity to mercury ions. The fluorescence intensity of the detection system is weakened due to the generation of non-fluorescent groups caused by the static quenching effect. The fluorescence quenching efficiency shows a fascinating linear relationship with Hg2+ ions at 0-100 μM (y = 0.0051x-0.015, R2 = 0.9943), and the detection limit is 0.9 μM. Acute toxicity test shows that NCQDs have low toxicity and little harm to environment. The detection system can be used for the quantification of mercury ions in environmental water samples, and the recovery rate is between 99.64 % and 103.43 %, indicating that it is a simple and economical fluorescence detection method.
Collapse
Affiliation(s)
- Guiqiao Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China.
| | - Shurong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Jinzhi Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Wensu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Xing Rong
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Yaxin Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Highly Selective Electrochemiluminescence Chemosensor for Sulfide Enabled by Hierarchical Reactivity. Anal Chem 2022; 94:5091-5098. [PMID: 35302353 DOI: 10.1021/acs.analchem.1c05317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is a well-known toxic gas with the odor of rotten eggs. Several reaction-based electrochemiluminescence (ECL) chemosensors for H2S have been developed; however, no homogeneous ECL probe with high selectivity toward H2S in aqueous media has been reported. Herein, we report an iridium(III) complex-based ECL chemodosimetric probe employing two 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) groups known as a photo-induced electron transfer quencher and a reaction site for the selective detection of H2S; the detection mechanism involves H2S being clearly distinguished from biothiols based on the different cleavage rates of the two NBD groups and extremely weak ECL interferences caused by reaction by-products. The probe was rationally designed to improve selectivity toward H2S within the ECL analysis platform by enabling the removal of nonspecific background signals observed via fluorescence analysis. This analytical system exhibited remarkable selectivity toward H2S, a rapid reaction rate, and high sensitivity (LOD = 57 nM) compared to conventional fluorescence methods. Furthermore, the probe could successfully quantify H2S in tap water samples and commercial ammonium sulfide solutions, which demonstrates the effectiveness of this probe in field monitoring.
Collapse
|
7
|
Yuan ZH, Yang YS, Lv PC, Zhu HL. Recent Progress in Small-Molecule Fluorescent Probes for Detecting Mercury Ions. Crit Rev Anal Chem 2020; 52:250-274. [PMID: 32715731 DOI: 10.1080/10408347.2020.1797466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mercury is a highly toxic and non-essential element that is found in every corner of the globe. The small amount of mercury produced by various pathways eventually enters freshwater and marine ecosystems, circulating through the food chain (especially fish) and causing various environmental problems in aspects including plants, animals, and human. There are several traditional quantitative methods developed for mercury ions (II) analysis in water samples. However, due to the complexity of the detection process, high cost and strong technical expertise, it is difficult to detect mercury ions in real-time. Therefore, in recent years, a large number of researchers have developed small-molecule fluorescent probes for Hg ions detection. Fluorimetry has the advantages of convenient detection, short response time, high sensitivity and good selectivity. This review summarized the small-molecule fluorescent probes for mercuric ion detection developed in recent years according to the chemical structural classification, compared their performances and elaborated the mechanism. We hope that the review will help the researches for the designs of metal ions fluorescent probes and their applications with certain reference value.
Collapse
Affiliation(s)
- Zeng-Hui Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Peng-Cheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Kim T, Kim HJ, Shin IS, Hong JI. Potential-Dependent Electrochemiluminescence for Selective Molecular Sensing of Cyanide. Anal Chem 2020; 92:6019-6025. [DOI: 10.1021/acs.analchem.0c00297] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Taemin Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hoon Jun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ik-Soo Shin
- Department of Chemistry and Department of ICMC Conversions Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Eremina AA, Kinzhalov MA, Katlenok EA, Smirnov AS, Andrusenko EV, Pidko EA, Suslonov VV, Luzyanin KV. Phosphorescent Iridium(III) Complexes with Acyclic Diaminocarbene Ligands as Chemosensors for Mercury. Inorg Chem 2020; 59:2209-2222. [DOI: 10.1021/acs.inorgchem.9b02833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anzhelika A. Eremina
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Mikhail A. Kinzhalov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Evgene A. Katlenok
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Andrey S. Smirnov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Elena V. Andrusenko
- TheoMAT Group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Evgeny A. Pidko
- TheoMAT Group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Vitalii V. Suslonov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Konstantin V. Luzyanin
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
10
|
Cyclometalated Iridium (III) complexes: Recent advances in phosphorescence bioimaging and sensing applications. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5413] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Ma DL, Wong SY, Kang TS, Ng HP, Han QB, Leung CH. Iridium(III)-based chemosensors for the detection of metal ions. Methods 2019; 168:3-17. [DOI: 10.1016/j.ymeth.2019.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023] Open
|
12
|
Kim T, Hong JI. Photoluminescence and Electrochemiluminescence Dual-Signaling Sensors for Selective Detection of Cysteine Based on Iridium(III) Complexes. ACS OMEGA 2019; 4:12616-12625. [PMID: 31460382 PMCID: PMC6682121 DOI: 10.1021/acsomega.9b01501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/12/2019] [Indexed: 05/11/2023]
Abstract
Cysteine (Cys) is important in biosynthesis, detoxification, and metabolism. The selective detection of Cys over structurally similar homocysteine (Hcy) or glutathione (GSH) remains an immense challenge. Although there are many methods for detecting Cys, photoluminescence (PL) and electrochemiluminescence (ECL) techniques are well-suited for clinical diagnostics and analytical technology because of their high sensitivities. Herein, we report PL and ECL dual-channel sensors using cyclometalated iridium(III) complexes for the discrimination of Cys from Hcy and GSH. The sensors react with cysteine preferentially because of kinetic differences in intramolecular conjugate addition/cyclization, enabling phosphorescence enhancement and ECL decrease in the blue-shifted region. Sensor 1 shows ratiometric PL turn-on and ECL turn-off for Cys. In addition, unique ECL-enhancing behavior of sensor 1 toward GSH enables discrimination between Cys and GSH. Sensor 1 was successfully applied to the detection of Cys in human serum by the ECL method. We demonstrate the first case of a Cys-selective PL and ECL dual-channel chemodosimetric sensor based on cyclometalated iridium(III) complexes and expect that the rational design of efficient PL and ECL dual-channel sensors will be useful in diagnostic technology.
Collapse
|
13
|
Kim KR, Kim HJ, Hong JI. Electrogenerated Chemiluminescent Chemodosimeter Based on a Cyclometalated Iridium(III) Complex for Sensitive Detection of Thiophenol. Anal Chem 2018; 91:1353-1359. [DOI: 10.1021/acs.analchem.8b03445] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kyoung-Rok Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hoon Jun Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-In Hong
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|