1
|
Brook DJR, DaRos J, Ponnekanti A, Agrestini S, Pellegrin E. Spectroscopic and thermodynamic characterization of a cobalt-verdazyl valence tautomeric system. influence of crystal structure, solvent and counterion. Dalton Trans 2024; 53:7536-7545. [PMID: 38597992 DOI: 10.1039/d4dt00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Crystallization of the verdazyl-based valence tautomeric ion [Co(dipyvd)2]2+ (where dipyvd is the radical ligand 1-isopropyl-3,5-di(2'-pyridyl)-6-oxoverdazyl) with a variety of different counterions results in materials that show varying degrees of valence tautomeric (VT) transition in the solid state. The X-ray structure of the SbF6 salt at 150 K reveals a localized structure for the S = 1/2 tautomer, with a Co3+ cation and distinct anionic and radical ligands. Comparison with the structure of the same material at 300 K reveals large structural changes in the ligand as a result of the valence tautomeric equilibrium. Data for the S = 3/2 form is less conclusive; X-ray spectroscopy on the PF6 salt suggests a degree of low spin Co2+ character for the S = 3/2 tautomer at very low temperature though this is inconsistent with EPR data at similar temperatures and structural information at 150 K. Magnetic measurements on the [BArF4]- and triflate salts in organic solvents show that the VT equilibrium is dependent on solvent and ion pairing effects.
Collapse
Affiliation(s)
- David J R Brook
- Department of Chemistry, San Jose State University, San Jose, CA 95192, USA.
| | - Jeffrey DaRos
- Department of Chemistry, San Jose State University, San Jose, CA 95192, USA.
| | - Aamani Ponnekanti
- Department of Chemistry, San Jose State University, San Jose, CA 95192, USA.
| | - Stefano Agrestini
- ALBA Synchrotron Light Source, E-08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Eric Pellegrin
- ALBA Synchrotron Light Source, E-08290 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
2
|
Fleming C, Vu S, Brook DJR, Agrestini S, Pellegrin E, DaRos J. Metal-ligand interactions in a redox active ligand system. Electrochemistry and spectroscopy of [M(dipyvd) 2] n+ (M=Zn, Ni, n=0, 1, 2). Front Chem 2023; 11:1295289. [PMID: 38033468 PMCID: PMC10684738 DOI: 10.3389/fchem.2023.1295289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Reaction of nickel and zinc triflates with the tridentate leucoverdazyl 1-isopropyl-3,5-di (2'-pyridyl)-6-oxo-2H-tetrazine (dipyvdH) and triethylamine resulted in the neutral coordination compounds M(dipyvd)2 (M = Ni,Zn). In acetonitrile, both compounds undergo two one electron oxidation processes, Zn (dipyvd)2 at -0.28 V and -0.12 V and Ni(dipyvd)2 at -0.32 V and -0.15 V vs ferrocene/ferricenium. Oxidations are ligand based resulting in an intermediate mixed valence species and a cationic bis(verdazyl) compound respectively. Oxidation of the ligand changes a localized, antiaromatic, non-planar 8π electron anion to a planar, delocalized 7π electron radical. The change in ligand structure results in an increase in the octahedral ligand field splitting from 10,500 cm-1 to ∼13,000 cm-1, suggesting an increase in the pi acceptor character of the ligand. In the mixed valence species, spectroscopic data suggests minimal interaction between ligands mediated by the metal center; i.e., these are class I-II systems in the Robin-Day classification.
Collapse
Affiliation(s)
- Connor Fleming
- Department of Chemistry, San Jose State University, San Jose, CA, United States
| | - Son Vu
- Department of Chemistry, San Jose State University, San Jose, CA, United States
| | - David J. R. Brook
- Department of Chemistry, San Jose State University, San Jose, CA, United States
| | - Stefano Agrestini
- ALBA Synchrotron Light Source, E-08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Eric Pellegrin
- ALBA Synchrotron Light Source, E-08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey DaRos
- Department of Chemistry, San Jose State University, San Jose, CA, United States
| |
Collapse
|
3
|
Roseiro P, Yalouz S, Brook DJR, Ben Amor N, Robert V. Modifications of Tanabe-Sugano d6 Diagram Induced by Radical Ligand Field: Ab Initio Inspection of a Fe(II)-Verdazyl Molecular Complex. Inorg Chem 2023; 62:5737-5743. [PMID: 36971364 DOI: 10.1021/acs.inorgchem.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Quantum entanglement between the spin states of a metal center and radical ligands is suggested in an iron(II) [Fe(dipyvd)2]2+ compound (dipyvd = 1-isopropyl-3,5-dipyridil-6-oxoverdazyl). Wave function ab initio (Difference Dedicated Configuration Interaction, DDCI) inspections were carried out to stress the versatility of local spin states. We named this phenomenon excited state spinmerism, in reference to our previous work (see Roseiro et al., ChemPhysChem 2022, e202200478) where we introduced the concept of spinmerism as an extension of mesomerism to spin degrees of freedom. The construction of localized molecular orbitals allows for a reading of the wave functions and projections onto the local spin states. The low-energy spectrum is well-depicted by a Heisenberg picture. A 60 cm-1 ferromagnetic interaction is calculated between the radical ligands with the Stotal = 0 and 1 states largely dominated by a local low-spin SFe = 0. In contrast, the higher-lying Stotal = 2 states are superpositions of the local SFe = 1 (17%, 62%) and SFe = 2 (72%, 21%) spin states. Such mixing extends the traditional picture of a high-field d6 Tanabe-Sugano diagram. Even in the absence of spin-orbit coupling, the avoided crossing between different local spin states is triggered by the field generated by radical ligands. This puzzling scenario emerges from versatile local spin states in compounds which extend the traditional views in molecular magnetism.
Collapse
|
4
|
Kostryukov SG, Kozlov AS, Konushkin IA, Krasnov DA, Yantsen NV. Modified Synthesis of 1-(4-R1-Phenyl)-3-(4-R2-phenyl)-5-phenylverdazyls. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Bibi T, Jadoon T, Ayub K. Two state "ON-OFF" NLO switch based on coordination complexes of iron and cobalt containing isomeric ligand: a DFT study. RSC Adv 2022; 12:23204-23214. [PMID: 36090436 PMCID: PMC9380411 DOI: 10.1039/d2ra03867f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Coordination complexes are interesting materials for nonlinear optical (NLO) applications due to their large hyperpolarizability values. Moreover, switchable NLO response is also important in coordination complexes. Herein, we report two state ON-OFF switchable NLO contrast of coordination complexes of Fe and Co containing isomeric ligands. The optical, UV-visible, and electronic properties besides the "ON-OFF" switching effect are calculated using the CAM-B3LYP/6-31+G (d) method. The NLO responses of ligand-metal isomers are qualitatively evaluated through variation in charge transference (CT) style through TD-DFT. The higher β o in each isomeric pair is strongly dependent on the HOMO-LUMO gap. The isomer 4b with lowest HOMO-LUMO gap shows the highest NLO response. The charge transfer pattern in these complexes results in variation of their β o values. The notable β o contrast of 21.15 in isomeric pairs 3a and 3b makes these complexes a favorable material for genuine NLO switches. Hence, the outcome of the current investigation reveals that these ligand-metal isomeric complexes exhibit a two-state switch "ON-OFF" effect.
Collapse
Affiliation(s)
- Tamseela Bibi
- Department of Chemistry, COMSATS University Abbottabad Campus 22060 Pakistan +92-992-383441 +92-992-383591
| | - Tabish Jadoon
- Department of Chemistry, COMSATS University Abbottabad Campus 22060 Pakistan +92-992-383441 +92-992-383591
- Department of Chemistry, GPGC No. 1 Abbottabad KPK Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Abbottabad Campus 22060 Pakistan +92-992-383441 +92-992-383591
| |
Collapse
|
6
|
Lipunova GN, Fedorchenko TG, Chupakhin ON. Verdazyls in Coordination Chemistry. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422070065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kostryukov SG, Kozlov AS, Konushkin IA, Asfandeev AY, Savrasov KV, Yantsen NV. Synthesis of 3-Aryl(pyridin-4-yl)-1-(4-R-phenyl)-5-phenyl-5,6-dihydro-1,2,4,5-tetrazinium Triflates and 6-Aryl(pyridin-4-yl)-4-phenyl-2-(4-R-phenyl)-1,2,3,4-tetrahydro-1,2,4,5-tetrazinyls. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Lin X, Bu Y. Magnetic couplings and applied electric field regulation in diradical SiC defect diamond-like nanoclusters. NEW J CHEM 2022. [DOI: 10.1039/d2nj01909d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We computationally characterize the diradical characters and explore the magnetic spin coupling characteristics of SiC defect diamond-like nanoclusters and their regulation by applied electric field.
Collapse
Affiliation(s)
- Xuexing Lin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
9
|
Pakulski P, Pinkowicz D. 1,2,5-Thiadiazole 1,1-dioxides and Their Radical Anions: Structure, Properties, Reactivity, and Potential Use in the Construction of Functional Molecular Materials. Molecules 2021; 26:4873. [PMID: 34443461 PMCID: PMC8400987 DOI: 10.3390/molecules26164873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
This work provides a summary of the preparation, structure, reactivity, physicochemical properties, and main uses of 1,2,5-thiadiazole 1,1-dioxides in chemistry and material sciences. An overview of all currently known structures containing the 1,2,5-thiadiazole 1,1-dioxide motif (including the anions radical species) is provided according to the Cambridge Structural Database search. The analysis of the bond lengths typical for neutral and anion radical species is performed, providing a useful tool for unambiguous assessment of the valence state of the dioxothiadiazole-based compounds based solely on the structural data. Theoretical methodologies used in the literature to describe the dioxothiadiazoles are also shortly discussed, together with the typical 'fingerprint' of the dioxothiadiazole ring reported by means of various spectroscopic techniques (NMR, IR, UV-Vis). The second part describes the synthetic strategies leading to 1,2,5-thiadiazole 1,1-dioxides followed by the discussion of their electrochemistry and reactivity including mainly the chemical methods for the successful reduction of dioxothiadiazoles to their anion radical forms and the ability to form coordination compounds. Finally, the magnetic properties of dioxothiadiazole radical anions and the metal complexes involving dioxothiadiazoles as ligands are discussed, including simple alkali metal salts and d-block coordination compounds. The last section is a prospect of other uses of dioxothiadiazole-containing molecules reported in the literature followed by the perspectives and possible future research directions involving these compounds.
Collapse
Affiliation(s)
- Paweł Pakulski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Aguilar-Calderón JR, Fehn D, Sorsche D, Miehlich M, Carroll PJ, Zars E, Meyer K, Mindiola DJ. Redox-Controlled and Reversible N-N Bond Forming and Splitting with an Iron IV Terminal Imido Ligand. Inorg Chem 2021; 60:13091-13100. [PMID: 34375089 DOI: 10.1021/acs.inorgchem.1c01509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidation of the low-spin FeIV imido complex [{(tBupyrr)2py}Fe═NAd] (1) ((tBupyrr)2py2- = 2,6-bis(3,5-di-tert-butyl-pyrrolyl)pyridine, Ad = 1-adamantyl) with AgOAc or AgNO3 promotes reductive N-N bond coupling of the former imido nitrogen with a pyrrole nitrogen to form the respective ferric hydrazido-like pincer complexes [{(tBupyrrNAd)(tBupyrr)py}Fe(κ2-X)] (X = OAc-, 2OAc; NO3-, 2NO3). Reduction of 2OAc with KC8 cleaves the N-N bond to reform the FeIV imido ligand in 1, whereas acid-mediated demetalation of 2OAc or 2NO3 yields the free hydrazine ligand [(tBupyrrNHAd)(tBupyrrH)py] (3), the latter of which can be used as a direct entry to the iron imido complex when treated with [Fe{N(SiMe3)2}2]. In addition to characterizing these Fe systems, we show how this nitrene transfer strategy can be expanded to Co for the one-step synthesis of Co{(tBu-NHAdpyrr)(tBupyrr)py}] (4) ((tBu-NHAdpyrr)(tBupyrr)py2- = 2-(3-tBu-5-(1-adamantylmethyl-2-methylpropane-2-yl)-pyrrol-2-yl)-6-(3,5-tBu2-pyrrol-2-yl)-pyridine).
Collapse
Affiliation(s)
| | - Dominik Fehn
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Dieter Sorsche
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthias Miehlich
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ethan Zars
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Second-order NLO properties and two-state switching effects of transition metal redox complexes of iron and cobalt: A DFT study. J Mol Graph Model 2021; 107:107975. [PMID: 34246108 DOI: 10.1016/j.jmgm.2021.107975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022]
Abstract
Designing switchable materials with large contrasts of nonlinear optical properties has been the focus of research in recent decades because of their widespread applications. Redox-active metal complexes due to charge transfer excitation are suitable to produce switchable nonlinear optical (NLO) material. In this regard, we present here the redox switchable NLO response of active metal complexes of iron and cobalt. The geometric, electronic, molecular absorption, nonlinear optical properties, and switch "ON/OFF" style of these metal complexes are studied at the CAM-B3LYP/6-31 + G(d) level of theory. NLO responses of these redox metal complexes are described in terms of change in the charge transfer (CT) patterns by time dependent density functional theory (TD-DFT). The highest βo value of 301534 × 10-30 esu is noticed in [Fe-ethynyl-ZnP]1+ complex, because of obvious charge transfer transition from metal to ligand i.e meatal-ligand charge transfer (MLCT) in redox metal complex. In each redox metal isomeric pair, the greater hyperpolarizability value of individual isomer is quite consistent with its smaller energy gap (H-Lgap) between highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), low crucial excitation energy, and bathochromic shift of λmax. The remarkable βo contrasts of these isomeric redox complexes illustrate that they can be appropriate for effective redox-triggered NLO switches. Thus, the results reveal that these redox pair complexes show two-state switching "ON/OFF" effect.
Collapse
|
12
|
Kostryukov SG, Kozlov AS, Krasnov DA, Burtasov AA, Petrov PS, Tezikova VS, Asfandeev AY, Idris TD. Synthesis of Symmetric Binuclear 5,6-Dihydro-1,2,4,5-tetrazinium Perchlorates. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s107036322104006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Electrical, and Magnetic Characteristics of Homo- and Hetero-Bimetallic Macromolecular Complexes with π-Conjugated Imine-oxime Backbone. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Arczyński M, Pinkowicz D. Influence of the Increasing Number of Organic Radicals on the Structural, Magnetic, and Electrochemical Properties of the Copper(II)-Dioxothiadiazole Family of Complexes. Inorg Chem 2020; 59:13489-13501. [PMID: 32907320 PMCID: PMC7509843 DOI: 10.1021/acs.inorgchem.0c01904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 01/17/2023]
Abstract
The preparation, structures, and electrochemical and magnetic properties supported by density functional theory (DFT) calculations of three new copper(II) compounds with [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 1,1-dioxide (td) and its radical anion (td·-) are reported: {[CuIICl(td)](μ-Cl)2[CuIICl(td)]} (1), which incorporates only neutral td ligands; [CuIICl(td·-)(td)]·2MeCN (2), which comprises one neutral td and one radical td·-; and PPN[CuIICl(td·-)2]·2DMA (3), where CuII ions are coordinated by two radical anions td·- (DMA, dimethylacetamide; PPN+, the bis(triphenylphosphine)iminium cation). All three compounds show interesting paramagnetic behavior with low-temperature features indicating significant antiferromagnetic coupling. The magnetic properties of 1 are dominated by CuII···CuII interactions (JCuCu) mediated through the Cl- bridges, while the magnetic properties of 2 and 3 are governed mainly by the td·-···td·- (Jtdtd) and CuII-td·- (JCutd) exchange interactions. The structure of 2 features only two major magnetic coupling pathways enabling the fitting of experimental data with Jtdtd = -36.0(5) cm-1 and JCutd = -12.6(2) cm-1 only. Compound 3 exhibits a complex network of magnetic contacts. Attempt to approximate its magnetic behavior using only a local magnetic contacts model resulted in Jtdtd = -5.6(1) cm-1 and two JCutd constants, -12.4(2) and -22.6(4) cm-1. The experimental fitting is critically compared with the results of broken symmetry density functional theory (BS DFT) calculations for inter- and intramolecular contacts. More consistent results were obtained with the M06 functional as opposed to popular B3LYP, which encountered problems reproducing some of the experimental intermolecular exchange interactions. Electrochemical measurements of 2 and 3 in MeCN showed three reversible nearly overlapping redox peaks appearing in a narrow potential range of -600 to -100 mV vs Fc/Fc+. Small differences between the redox events suggest that such compounds may be good candidates for new switchable materials, where the electron transfer between the metal and the ligand center is triggered by temperature, pressure, or light (valence tautomerism).
Collapse
Affiliation(s)
- Mirosław Arczyński
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
15
|
|
16
|
Valence tautomerism and delocalization in transition metal complexes of o-amidophenolates and other redox-active ligands. Some recent results. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kostryukov SG, Chernyaeva OY, Tanaseichuk BS, Kozlov AS, Pryanichnikova MK, Burtasov AA. Triarylverdazyl radicals as promising redox-active components of rechargeable organic batteries. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2905-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Kostryukov SG, Pryanichnikova MK, Kozlov AS, Burtasov AA, Tanaseichuk BS. Synthesis of Verdazyl Radicals with Different Number of
Methylene Fragments in the Internal Conjugated Diyne Moiety and Their Ability to
Solid-State Polymerization. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220050126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Fleming C, Chung D, Ponce S, Brook DJR, DaRos J, Das R, Ozarowski A, Stoian SA. Valence tautomerism in a cobalt-verdazyl coordination compound. Chem Commun (Camb) 2020; 56:4400-4403. [PMID: 32242582 DOI: 10.1039/d0cc01770a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Coordination of 1-isopropyl-3,5-dipyridyl-6-oxoverdazyl to cobalt results in a dication best described in the solid state as a high spin cobalt(ii) ion coordinated to two radical ligands with an S = 3/2 ground state. On dissolution in acetonitrile, the cobalt(ii) form equilibrates with a cobalt(iii) valence tautomer with an S = 1/2 ground state.
Collapse
Affiliation(s)
- Connor Fleming
- Department of Chemistry, San Jose State University, One Washington Square, San Jose, CA 95126, USA.
| | - Dorothy Chung
- Department of Chemistry, San Jose State University, One Washington Square, San Jose, CA 95126, USA.
| | - Servando Ponce
- Department of Chemistry, San Jose State University, One Washington Square, San Jose, CA 95126, USA.
| | - David J R Brook
- Department of Chemistry, San Jose State University, One Washington Square, San Jose, CA 95126, USA.
| | - Jeffrey DaRos
- Department of Chemistry, San Jose State University, One Washington Square, San Jose, CA 95126, USA.
| | - Raja Das
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Sebastian A Stoian
- Department of Chemistry, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| |
Collapse
|
20
|
Kostryukov SG, Balandina AV, Kozlov AS, Kraynov EV, Pryanichnikova MK, Chernyaeva OY, Akhmatova AA, Lukshina YI. Synthesis and Electrochemical Properties of
2-(4-R1-Phenyl)-6-(4-R2-phenyl)-4-phenyl-3,4-dihydro1,2,4,5-tetrazin-1(2H)-yls. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220030044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Sanz CA, Patrick BO, Hicks RG. Synthesis and redox chemistry of Pd(ii) complexes of a pincer verdazyl ligand. Dalton Trans 2019; 48:12674-12683. [PMID: 31384845 DOI: 10.1039/c9dt02549a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of palladium(ii) complexes containing a redox-active, tridentate verdazyl ligand of general formula (verdazyl)PdL (L = Cl, CH3CN) are synthesized. The tetrazine core of tridentate verdazyl ligand 5 is flanked by two pyridyl groups, creating a geometry in which the ancillary ligand L is bound trans to the verdazyl ring in the square planar metal complexes. Pd(ii) complexes were isolated with the verdazyl ligand in either its neutral radical charge state (6: L = CH3CN, 12: L = Cl) or its closed-shell monoanionic charge state (10: L = CH3CN, 9: L = Cl). The charge state of the ligand was determined using X-ray crystallography and NMR, EPR, and IR spectroscopy. The cyclic voltammograms of radical complexes 6 and 12 each contain a reversible one-electron reduction wave and an irreversible one-electron oxidation wave. The complexes can be chemically interconverted between radical ligand (6, 12) and reduced, closed-shell anion (9, 10) using decamethylferrocene as the reductant and a mixture of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and fluoroboric acid as the oxidant.
Collapse
Affiliation(s)
- Corey A Sanz
- Department of Chemistry, University of Victoria, PO Box 3065 STN CSC, Victoria, B.C. V8W3V6, Canada.
| | - Brian O Patrick
- Crystallography Laboratory, Department of Chemistry, University of British Columbia, Vancouver, BC V6T1Z1, Canada
| | - Robin G Hicks
- Department of Chemistry, University of Victoria, PO Box 3065 STN CSC, Victoria, B.C. V8W3V6, Canada.
| |
Collapse
|
22
|
Dale S, Bonanno NM, Pelaccia M, Lough AJ, Miyawaki A, Takahashi K, Lemaire MT. Ligand mixed-valence and electrical conductivity in coordination complexes containing a redox-active phenalenol-substituted ligand. Dalton Trans 2019; 48:8053-8056. [PMID: 31116216 DOI: 10.1039/c9dt01788g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new redox-active hydrazone ligand bearing a phenalenol group is described (phpl), which produces neutral six-coordinate Fe and Co complexes (1 & 2) with the ligands identified in different oxidation states; an open-shell anion radical and closed-shell dianion. An intense and very low-energy intervalence charge transfer (IVCT) band is identified in solid-state and in solution in the complexes. Single crystals of 1 are semiconducting (at 300 K, σ = 3.05 × 10-4 S cm-1 with Ea = 245 meV).
Collapse
Affiliation(s)
- Sarah Dale
- Department of Chemistry, Brock University, St Catharines, Ontario L2S 3A1, Canada.
| | - Nico M Bonanno
- Department of Chemistry, Brock University, St Catharines, Ontario L2S 3A1, Canada.
| | - Mark Pelaccia
- Department of Chemistry, Brock University, St Catharines, Ontario L2S 3A1, Canada.
| | - Alan J Lough
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Atsuhiro Miyawaki
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kazuyuki Takahashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Martin T Lemaire
- Department of Chemistry, Brock University, St Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
23
|
Petunin PV, Votkina DE, Trusova ME, Rybalova TV, Amosov EV, Uvarov MN, Postnikov PS, Kazantsev MS, Mostovich EA. Oxidative addition of verdazyl halogenides to Pd(PPh3)4. NEW J CHEM 2019. [DOI: 10.1039/c9nj03361k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A novel approach to the preparation of stable Pd-substituted verdazyls was developed through the direct oxidative addition of iodoverdazyls to Pd(PPh3)4.
Collapse
Affiliation(s)
- Pavel V. Petunin
- Tomsk Polytechnic University
- Tomsk 634050
- Russia
- Siberian State Medical University
- Tomsk 634050
| | | | | | - Tatyana V. Rybalova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch
- Russian Academy of Sciences
- Novosibirsk 630090
- Russia
| | - Evgeny V. Amosov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch
- Russian Academy of Sciences
- Novosibirsk 630090
- Russia
| | - Mikhail N. Uvarov
- Novosibirsk State University
- Novosibirsk 630090
- Russia
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion
- Siberian Branch
| | - Pavel S. Postnikov
- Tomsk Polytechnic University
- Tomsk 634050
- Russia
- University of Chemistry and Technology
- Prague 16628
| | - Maxim S. Kazantsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch
- Russian Academy of Sciences
- Novosibirsk 630090
- Russia
| | | |
Collapse
|