1
|
Jenkins DT, Trodden EC, Andresen JM, Mansell SM, McIntosh RD. Switchable, chiral aluminium catalysts for ring opening polymerisations. Dalton Trans 2024. [PMID: 39523835 DOI: 10.1039/d4dt02831g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A switchable, solvent-free catalytic system was developed in which Al methyl aminebis(phenolate) catalysts selectively initiate the formation of a polyether from cyclohexene oxide under CO2 atmosphere or the ring opening copolymerisation (ROCoP) of cyclohexene oxide and CO2 through the addition of a PPNCl (bis(triphenylphosphine)iminium chloride) cocatalyst to form poly(cyclohexene carbonate).
Collapse
Affiliation(s)
- David T Jenkins
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Elizabeth C Trodden
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
- Research Centre for Carbon Solutions (RCCS), Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - John M Andresen
- Research Centre for Carbon Solutions (RCCS), Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Stephen M Mansell
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Ruaraidh D McIntosh
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
2
|
Yolsal U, Shaw PJ, Lowy PA, Chambenahalli R, Garden JA. Exploiting Multimetallic Cooperativity in the Ring-Opening Polymerization of Cyclic Esters and Ethers. ACS Catal 2024; 14:1050-1074. [PMID: 38269042 PMCID: PMC10804381 DOI: 10.1021/acscatal.3c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
The use of multimetallic complexes is a rapidly advancing route to enhance catalyst performance in the ring-opening polymerization of cyclic esters and ethers. Multimetallic catalysts often outperform their monometallic analogues in terms of reactivity and/or polymerization control, and these improvements are typically attributed to "multimetallic cooperativity". Yet the origins of multimetallic cooperativity often remain unclear. This review explores the key factors underpinning multimetallic cooperativity, including metal-metal distances, the flexibility, electronics and conformation of the ligand framework, and the coordination environment of the metal centers. Emerging trends are discussed to provide insights into why cooperativity occurs and how to harness cooperativity for the development of highly efficient multimetallic catalysts.
Collapse
Affiliation(s)
- Utku Yolsal
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Peter J. Shaw
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Phoebe A. Lowy
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Raju Chambenahalli
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Jennifer A. Garden
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
3
|
Ring Opening Polymerization of Lactides and Lactones by Multimetallic Titanium Complexes Derived from the Acids Ph2C(X)CO2H (X = OH, NH2). Catalysts 2022. [DOI: 10.3390/catal12090935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The reactions of the titanium alkoxide [Ti(OR)4] (R = Me, nPr, iPr, tBu) with the acids 2,2’-Ph2C(X)(CO2H), where X = OH and NH2, i.e., benzilic acid (2,2’-diphenylglycolic acid, L1H2), and 2,2’-diphenylglycine (L2H3), have been investigated. The variation of the reaction stoichiometry allows for the isolation of mono-, bi-, tri or tetra-metallic products, the structures of which have been determined by X-ray crystallography. The ability of the resulting complexes to act as catalysts for the ring opening polymerization (ROP) of ε-caprolactone (ε-CL) and r-lactide (r-LA) has been investigated. In the case of ε-CL, all catalysts except that derived from [Ti(OnPr)4] and L2H3, i.e., 7, exhibited an induction period of between 60 and 285 min, with 7 exhibiting the best performance (>99% conversion within 6 min). The PCL products are moderate- to high-molecular weight polymers. For r-LA, systems 1, 3, 4 and 7 afforded conversions of ca. 90% or more, with 4 exhibiting the fastest kinetics. The molecular weights for the PLA are somewhat higher than those of the PCL, with both cyclic and linear PLA products (end groups of OR/OH) identified. Comparative studies versus the [Ti(OR)4] starting materials were conducted, and although high conversions were achieved, the control was poor.
Collapse
|
4
|
Fazekas E, Jenkins DT, Forbes AA, Gallagher B, Rosair GM, McIntosh RD. Amino acid-derived bisphenolate palladium complexes as C-C coupling catalysts. Dalton Trans 2021; 50:17625-17634. [PMID: 34806099 DOI: 10.1039/d1dt03068j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of amine bisphenol (ABP) pro-ligands featuring amino acid ester pendant arms were prepared. Optimisation of the synthetic method allowed the facile incorporation of naturally occurring, chiral amino acids into the ABP scaffold with minimal racemisation. Reaction of the pro-ligands (LH2) with Pd(OAc)2, in the presence of amines, led to the formation of complexes with an unprecedented pincer-like O,N,O coordination mode around the PdII centre. The complexations in the presence of trialkylamines (NR3) afforded a mixture of LPdNR3 and LPdNHR2 species. The latter was shown to form via an ambient-temperature C-N cleavage involving unstable Pd(OAc)2(NHR2)2 intermediates. Using pyridine as base eliminated this dealkylation and resulted in the exclusive formation of LPd(py) complexes in high yields. In total, seven novel PdII ABP complexes were prepared, exhibiting distorted square-planar geometries with the asymmetric ligand moieties orientated towards the metal centre. The air- and moisture-stable LPd(py) complexes were successfully employed as catalysts in two types of C-C coupling reactions. The Suzuki-Miyaura coupling of 4'-bromoacetophenone and phenylboronic acid reached high yields (up to 81%), while a scope of further alkyl bromides was also efficiently converted using low catalyst loadings (1 mol%) and mild temperatures (40 °C). Furthermore, a Pd-pyridine complex achieved high activity in the Mizoroki-Heck coupling of styrene and 4'-bromoacetophenone.
Collapse
Affiliation(s)
- Eszter Fazekas
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - David T Jenkins
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Andrew A Forbes
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Brendan Gallagher
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Georgina M Rosair
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Ruaraidh D McIntosh
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
5
|
Polymetallic Group 4 Complexes: Catalysts for the Ring Opening Polymerisation of rac-Lactide. Catalysts 2021. [DOI: 10.3390/catal11050551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five novel air- and moisture-stable polymetallic Ti and Zr amino acid-derived amine bis(phenolate) (ABP) complexes were synthesised and fully characterised, including X-ray crystallographic studies. The reaction of the ABP proligands with Ti or Zr alkoxides has resulted in the formation of polymetallic aggregates of different nuclearity. The steric bulk on the pendant arm of the ligand was found to play a critical role in establishing the nuclearity of the aggregated complex. Sterically, less-demanding groups, such as H or Me, facilitated the formation of tetrametallic Ti clusters, bridged by carboxylate groups, while increased steric bulk (tBu) led to the formation of binuclear μ-oxo-bridged species. The isolated complexes were employed as catalysts for the ring opening polymerisation (ROP) of rac-lactide. Overall, the Ti catalysts were all active with the smaller, bimetallic Ti aggregates exhibiting relatively faster rates. A monometallic, bis(ABP) Zr complex was found to exert remarkable ROP activity, albeit with limited control over the tacticity and molecular weight distribution of the polymer. A further oxo-bridged Zr cluster was shown to display a previously unprecedented trimetallic structure and achieved a moderate rate in the ROP of rac-lactide.
Collapse
|
6
|
Gesslbauer S, Hutchinson G, White AJP, Burés J, Romain C. Chirality-Induced Catalyst Aggregation: Insights into Catalyst Speciation and Activity Using Chiral Aluminum Catalysts in Cyclic Ester Ring-Opening Polymerization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sami Gesslbauer
- Department of Chemistry, Molecular Science and Research Hub, Imperial College London, Wood Lane, London W12 0BZ, U.K
| | - George Hutchinson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew J. P. White
- Department of Chemistry, Molecular Science and Research Hub, Imperial College London, Wood Lane, London W12 0BZ, U.K
| | - Jordi Burés
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Charles Romain
- Department of Chemistry, Molecular Science and Research Hub, Imperial College London, Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
7
|
Behm K, Fazekas E, Paterson MJ, Vilela F, McIntosh RD. Discrete Ti-O-Ti Complexes: Visible-Light-Activated, Homogeneous Alternative to TiO 2 Photosensitisers. Chemistry 2020; 26:9486-9494. [PMID: 32428304 PMCID: PMC7496837 DOI: 10.1002/chem.202001678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/08/2020] [Indexed: 12/12/2022]
Abstract
A series of novel bimetallic TiIV amine bis(phenolate) complexes was synthesised and fully characterised. X-ray crystallography studies revealed distorted octahedral geometries around the Ti centres with single or double oxo-bridges connecting the two metals. These robust, air- and moisture-stable complexes were employed as photosensitisers generating singlet oxygen following irradiation with visible light (420 nm) LED module in a commercial flow reactor. All five complexes showed high activity in the photo-oxygenation of α-terpinene and achieved complete conversion to ascaridole in four hours at ambient temperature. The excellent selectivity of these photosensitisers towards ascaridole (vs. transformation to p-cymene) was demonstrated with control experiments using a traditional TiO2 catalyst. Further comparative studies employing the free pro-ligands as well as a monometallic analogue highlighted the importance of the 'TiO2 -like' moiety in the polymetallic catalysts. Computational studies were used to determine the nature of the ligand to metal charge transfer (LMCT) states and singlet-triplet gaps for each complex, the calculated trends in the UV-vis absorption spectra across the series agreed well with the experimental results.
Collapse
Affiliation(s)
- Kira Behm
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Eszter Fazekas
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | | | - Filipe Vilela
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | | |
Collapse
|
8
|
Fang C, Ma H. Ring-opening polymerization of rac-lactide, copolymerization of rac-lactide and ε-caprolactone by zinc complexes bearing pyridyl-based tridentate amino-phenolate ligands. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Indira S, Vinoth G, Bharathi M, Bharathi S, Kalilur Rahiman A, Shanmuga Bharathi K. Catechol oxidase and phenoxazinone synthase mimicking activities of mononuclear Fe(III) and Co(III) complexes of amino-bis(phenolate)-based mixed ligands: Synthesis, spectral and electrochemical studies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Li X, Jia Z, Pan X, Wu J. Isoselective Ring-Opening Polymerization of rac-Lactide Catalyzed by Sodium/potassium Tetradentate Aminobisphenolate Ion-paired Complexes. Chem Asian J 2019; 14:662-669. [PMID: 30644176 DOI: 10.1002/asia.201801834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Indexed: 02/04/2023]
Abstract
Two sodium/potassium tetradentate aminobisphenolate ion-paired complexes were synthesized and structurally characterized. These ion-paired complexes are efficient catalysts for the ring-opening polymerization of rac-lactide (rac-LA) in the presence of 5 equivalents BnOH as an initiator and the side reaction of epimerization can be suppressed well at low temperatures. The polymerizations are controllable, affording polylactides with desirable molecular weights and narrow molecular weight distributions; the highest molecular weight can reach 50.1 kg mol-1 in this system, and a best isoselectivity of Pm =0.82 was achieved. Such polymerizations have rarely been reported for isoselective sodium/potassium complexes without crown ether as an auxiliary ligand. The solid structures suggest that BnOH can be activated by an interaction with the anion of sodium/potassium complex via a hydrogen bond and that the monomer is activated by coordination to sodium/potassium ion.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|