1
|
Zhang J, Zeng Y, Chen L, Lei X, Yang Y, Chen Z, Guo L, Li L. A novel core-shell composite of PCN-222@MIPIL for ultrasensitive electrochemical sensing 4-nonylphenol. ENVIRONMENTAL RESEARCH 2023; 225:115499. [PMID: 36848978 DOI: 10.1016/j.envres.2023.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/15/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
A novel core-shell composite of PCN-222 and molecularly imprinted poly (ionic liquid) (PCN-222@MIPIL) with high conductivity and selectivity was prepared for electrochemical sensing 4-nonylphenol (4-NP). The electrical conductivities of some MOFs including PCN-222, ZIF-8, NH2-UIO-66, ZIF-67, and HKUST-1 were explored. The results indicated that PCN-222 had the highest conductivity and was then used as a novel imprinted support. PCN-222@MIPIL with core-shell and porous structure was synthesized using PCN-222 as support and 4-NP as template. The average pore volume of PCN-222@MIPIL was 0.085 m3 g-1. In addition, the average pore width of PCN-222@MIPIL was from 1.1 to 2.7 nm. The electrochemical response for PCN-222@MIPIL sensor for 4-NP was 2.54, 2.14, and 4.24 times that of non-molecularly imprinted poly (ionic liquid) (PCN-222@NIPIL), PCN-222, and MIPIL sensors, respectively, which result from superior conductivity and imprinted recognition sites of PCN-222@MIPIL. The current response of PCN-222@MIPIL sensor to 4-NP concentration from 1 × 10-4 to 10 μM presented an excellent linear relationship. The detection limit of 4-NP was 0.03 nM. The synergistic effect between the PCN-222 supporter with high conductivity, specific surface area and shell layer of surface MIPIL results in the outstanding performance of PCN-222@MIPIL. PCN-222@MIPIL sensor was adopted for detecting 4-NP in real samples and presented to be a reliable approach for determining 4-NP.
Collapse
Affiliation(s)
- Jian Zhang
- School of Materials Science & Engineering, Changzhou University, Changzhou, 213016, PR China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Xiaoling Lei
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Zhidong Chen
- School of Materials Science & Engineering, Changzhou University, Changzhou, 213016, PR China.
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| |
Collapse
|
2
|
Kochetygov I, Justin A, Asgari M, Yang S, Karve V, Schertenleib T, Stoian D, Oveisi E, Mensi M, Queen WL. 3D vs. turbostratic: controlling metal-organic framework dimensionality via N-heterocyclic carbene chemistry. Chem Sci 2022; 13:6418-6428. [PMID: 35733888 PMCID: PMC9159099 DOI: 10.1039/d2sc01041k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Using azolium-based ligands for the construction of metal-organic frameworks (MOFs) is a viable strategy to immobilize catalytically active N-heterocyclic carbenes (NHC) or NHC-derived species inside MOF pores. Thus, in the present work, a novel copper MOF referred to as Cu-Sp5-BF4, is constructed using an imidazolinium ligand, H2Sp5-BF4, 1,3-bis(4-carboxyphenyl)-4,5-dihydro-1H-imidazole-3-ium tetrafluoroborate. The resulting framework, which offers large pore apertures, enables the post-synthetic modification of the C2 carbon on the ligand backbone with methoxide units. A combination of X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ssNMR) and electron microscopy (EM), are used to show that the post-synthetic methoxide modification alters the dimensionality of the material, forming a turbostratic phase, an event that further improves the accessibility of the NHC sites promoting a second modification step that is carried out via grafting iridium to the NHC. A combination of X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) methods are used to shed light on the iridium speciation, and the catalytic activity of the Ir-NHC containing MOF is demonstrated using a model reaction, stilbene hydrogenation.
Collapse
Affiliation(s)
- Ilia Kochetygov
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Anita Justin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
- Department of Chemical Engineering & Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Shuliang Yang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
- College of Energy, Xiamen University Xiamen Fujian 361102 China
| | - Vikram Karve
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Till Schertenleib
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Dragos Stoian
- Swiss-Norwegian Beamlines, ESRF BP 220 Grenoble 38043 France
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Mounir Mensi
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| |
Collapse
|
3
|
Justin A, Espín J, Kochetygov I, Asgari M, Trukhina O, Queen WL. A Two Step Postsynthetic Modification Strategy: Appending Short Chain Polyamines to Zn-NH 2-BDC MOF for Enhanced CO 2 Adsorption. Inorg Chem 2021; 60:11720-11729. [PMID: 34264652 DOI: 10.1021/acs.inorgchem.1c01216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalizing metal-organic frameworks (MOFs) with amines is a commonly used strategy to enhance their performance in CO2 capture applications. As such, in this work, a two-step strategy to covalently functionalize NH2-containing MOFs with short chain polyamines was developed. In the first step, the parent MOF, Zn4O(NH2-BDC)3, was exposed to bromoacetyl bromide (BrAcBr), which readily reacts with pendant -NH2 groups on the 2-amino-1,4-benzenedicarboxylate (NH2-BDC2-) ligand. 1H NMR of the digested MOF sample revealed that as much as 90% of the MOF ligands could be functionalized in the first step. Next, the MOF samples 60% of the ligands functionalized with acetyl bromide, Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8, was exposed to several short chain amines including ethylenediamine (ED), diethylenetriamine (DETA), and tris(2-aminoethyl)amine (TAEA). Subsequent digested 1H NMR analysis indicated that a total of 30%, 28%, and 19% of the MOF ligands were successfully grafted to ED, DETA, and TAEA, respectively. Next, the CO2 adsorption properties of the amine grafted MOFs were studied. The best performing material, TAEA-appended-Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8, exhibits a zero-coverage isosteric heat of CO2 adsorption of -62.5 kJ/mol, a value that is considerably higher than the one observed for the parent framework, -21 kJ/mol. Although the boosted CO2 affinity only leads to a slight increase in the CO2 adsorption capacity in the low-pressure regime (0.15 bar), which is of interest in postcombustion carbon dioxide capture, the CO2/N2 (15/85) selectivity at 313 K is 143, a value that is ∼35 times higher than the one observed for Zn4O(NH2-BDC)3, 4.1. Such enhancements are attributed to accessible primary amines, which were grafted to the MOF ligand. This hypothesis was further supported via in situ DRIFTS measurements of TAEA-Ac-Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8 after exposure to CO2, which revealed the chemisorption of CO2 via the formation of hydrogen bonded carbamates/carbamic acid and CO2δ- species; the latter are adducts formed between CO2 and [amineH]+Br- salts that are produced during the amine grafting step.
Collapse
Affiliation(s)
- Anita Justin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Jordi Espín
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Ilia Kochetygov
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Olga Trukhina
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| |
Collapse
|
4
|
Zuo S, Zhang F, Liu J, Zuo A. Synthesis of bis(2-imino-1,3-dimethylbenzimidazoline)s via reactions of a solvothermally prepared benzimidazolium chloride and diamines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Akhtar S, Singha P, De A, Das KS, Saha S, Bala S, Mondal R. Construction of a series of metal-directed MOFs to explore their physical and chemical properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj03424j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report a series of metal-directed coordination polymers and explore their various properties. The polymeric networks show interesting properties such as selective CO2 gas adsorption, Fenton-type photocatalytic dye degradation and heterogeneous catalytic reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Sohel Akhtar
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Pabitra Singha
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Avik De
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Krishna Sundar Das
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Sayan Saha
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Sukhen Bala
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Raju Mondal
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
6
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
7
|
Ferreira TJ, Vera AT, de Moura BA, Esteves LM, Tariq M, Esperança JMSS, Esteves IAAC. Paramagnetic Ionic Liquid/Metal Organic Framework Composites for CO 2/CH 4 and CO 2/N 2 Separations. Front Chem 2020; 8:590191. [PMID: 33304882 PMCID: PMC7701274 DOI: 10.3389/fchem.2020.590191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/05/2022] Open
Abstract
Global warming is arguably the biggest scientific challenge of the twenty-first century and its environmental consequences are already noticeable. To mitigate the emissions of greenhouse gases, particularly of CO2, there is an urgent need to design materials with improved adsorbent properties. Five different magnetic ionic liquids were impregnated into the metal–organic framework ZIF-8. The composites were produced by a direct-contact method, and their performance as sorbents for gas separation applications was studied. The impact of the ionic liquid anion on the sorption capacity and ideal CO2/CH4 and CO2/N2 selectivities were studied, focusing on understanding the influence of metal atom and ligand on the adsorbent properties. Reproducible methodology, along with rigorous characterization, were established to assess the impact of the ionic liquid on the performance of the composite materials. Results show that the ionic liquid was well-impregnated, and the ZIF-8 structure was maintained after ionic liquid impregnation. The produced composites were of microporous nature and were thermally stable. CO2, CH4, and N2 adsorption–desorption isotherms were obtained at 303 K and between 0 and 16 bar. The adsorption-desorption data of the composites were compared with that obtained for original ZIF-8. The general trend in composites is that the increased gas uptake per available pore volume compensates the pore volume loss. Adsorption data per unit mass showed that composites have reversible sorption, but inferior gas uptake at all pressure ranges. This is due to the observed total pore volume loss by the ionic liquid pore occupation/blockage. In most cases, composites showed superior selectivity performance at all pressure range. In particular, the composite [C4MIM]2[MnCl4]@ZIF-8 shows a different low-pressure selectivity trend from the original MOF, with a 33% increase in the CO2/N2 selectivity at 1 bar and 19% increase in the CO2/CH4 selectivity at 10 bar. This material shows potential for use in a post-combustion CO2 capture application that can contribute to greenhouse gas mitigation.
Collapse
Affiliation(s)
- Tiago J Ferreira
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (FCT NOVA), Costa da Caparica, Portugal
| | - Ana T Vera
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (FCT NOVA), Costa da Caparica, Portugal
| | - Beatriz A de Moura
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (FCT NOVA), Costa da Caparica, Portugal
| | - Laura M Esteves
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (FCT NOVA), Costa da Caparica, Portugal
| | - Mohammad Tariq
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (FCT NOVA), Costa da Caparica, Portugal
| | - José M S S Esperança
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (FCT NOVA), Costa da Caparica, Portugal
| | - Isabel A A C Esteves
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (FCT NOVA), Costa da Caparica, Portugal
| |
Collapse
|
8
|
Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213407] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake by Solvent Assisted Ligand Exchange. CRYSTALS 2020. [DOI: 10.3390/cryst10070599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of this work was to synthesize zeolitic imidazolate framework-8 (ZIF-8) by an alternative method and then modify the surface properties for enhancing the CO2 adsorption performance. The ZIF-8 was synthesized by a water based synthesis method using 2-methyl imidazole (2-MeIM) as a hydrogen bond donor and quaternary ammonium salts (QAS) as a hydrogen bond acceptor. The optimal synthesis conditions were investigated by varying (i) the order of precursor mixing during the synthesis process (ii) different QAS (tetrabutyl ammonium bromide (TBAB), tetraethyl ammonium bromide (TEAB) and trimethyl phenyl ammonium bromide (TMPAB)) and (iii) the ratio between 2-MeIM and QAS. The results show that the optimal synthesis condition was using TMPAB as the hydrogen bond acceptor with the ratio between 2-MeIM and TMPAB of 8:2 and in the order of first mixing both hydrogen bond donor and acceptor before adding Zn(NO3)2⋅6H2O solution. TMPAB can provide uniform size distribution with the smallest particle sizes of ZIF-8. This can be explained by the higher hydrogen bond strength between hydrogen bond donor (2-MeIM) and hydrogen bond acceptor (TMPAB) when compared with that of the rest of two QAS. The synthesized ZIF-8 was modified by solvent-assisted ligand exchange methods. The organic linker of ZIF-8 (2-MeIM) was exchanged by 2-aminobenzimidazole (2-NH2bZIM) and 2-phenylimidazole (2-PhIM). The CO2 uptake of modified ZIF-8 was enhanced upon exchanging with 2-NH2bZIM. The increase in CO2 uptake was due to an additional interaction between CO2 and exchanged imidazole linker and an increase in surface properties (higher surface area, pore size and pore volume).
Collapse
|
10
|
Cruz-Navarro JA, Hernandez-Garcia F, Alvarez Romero GA. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213263] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Amombo
Noa FM, Svensson Grape E, Brülls SM, Cheung O, Malmberg P, Inge AK, McKenzie CJ, Mårtensson J, Öhrström L. Metal-Organic Frameworks with Hexakis(4-carboxyphenyl)benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. J Am Chem Soc 2020; 142:9471-9481. [PMID: 32312041 PMCID: PMC7304877 DOI: 10.1021/jacs.0c02984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/28/2022]
Abstract
Nine metal-organic frameworks have been prepared with the hexagon-shaped linker 1,2,3,4,5,6-hexakis(4-carboxyphenyl)benzene (H6cpb) by solvothermal reactions in dimethylformamide (dmf) or dimethylacetamide (dmac) with acetic acid or formic acid as modulators: [Bi2(cpb)(acetato)2(dmf)2]·2dmf CTH-6 forms a rtl-net; 2(H2NMe2)[Cu2(cpb)] CTH-7 forms a kgd-net; [Fe4(cpb)(acetato)2(dmf)4] CTH-8 and [Co4(cpb)(acetato)2(dmf)4] CTH-9 are isostructural and form yav-nets; 2(HNEt3)[Fe2(cpb)] CTH-10 and the two polymorphs of 2(H2NMe2)[Zn2(cpb)]·1.5dmac, Zn-MOF-888 and CTH-11, show kgd-nets; [Cu2(cpb)(acetato)2(dmf)2]·2dmf, CTH-12, forms a mixed coordination and hydrogen-bonded sql-net; and 2(H2NMe2)[Zn2(cpb)] CTH-13, a similarly mixed yav-net. Surface area values (Brunauer-Emmett-Teller, BET) range from 34 m2 g-1 for CTH-12 to 303 m2 g-1 for CTH-9 for samples activated at 120 °C in dynamic vacuum. All compounds show normal (10-fold higher) molar CO2 versus N2 uptake at 298 K, except the 19-fold CO2 uptake for CTH-12 containing Cu(II) dinuclear paddle-wheels. We also show how perfect hexagons and triangles can combine to a new 3D topology laf, a model of which gave us the idea of foldable network topologies, as the laf-net can fold into a 2D form while retaining the local geometry around each vertex. Other foldable nets identified are cds, cds-a, ths, sqc163, clh, jem, and tfc covering the basic polygons and their combinations. The impact of this concept on "breathing" MOFs is discussed. I2 sorption, both from gas phase and from MeOH solution, into CTH-7 were studied by time of flight secondary ion mass spectrometry (ToF-SIMS) on dried crystals. I2 was shown to have penetrated the crystals, as layers were consecutively peeled off by the ion beam. We suggest ToF-SIMS to be a method for studying sorption depth profiles of MOFs.
Collapse
Affiliation(s)
- Francoise M. Amombo
Noa
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Erik Svensson Grape
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Steffen M. Brülls
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Ocean Cheung
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Per Malmberg
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - A. Ken Inge
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Christine J. McKenzie
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jerker Mårtensson
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Lars Öhrström
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
12
|
Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chem Soc Rev 2020; 49:2751-2798. [DOI: 10.1039/c9cs00609e] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The defined synthesis of OMS in MOFs is the basis for targeted functionalization through grafting, the coordination of weakly binding species and increased (supramolecular) interactions with guest molecules.
Collapse
Affiliation(s)
- Ülkü Kökçam-Demir
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Anna Goldman
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Leili Esrafili
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Maniya Gharib
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| |
Collapse
|
13
|
Beheshti A, Mousavifard ES, Noorizadeh S, Mayer P, Woźniak K. Impact of cyanide co-ligand to convert crystal structure of pyrazole-based copper coordination compounds from a dinuclear to a polymeric structure and DFT calculations of [Cu2(tpmp)X2] (X = Cl and I). Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Maity R, Singh HD, Yadav AK, Chakraborty D, Vaidhyanathan R. Water‐stable Adenine‐based MOFs with Polar Pores for Selective CO
2
Capture. Chem Asian J 2019; 14:3736-3741. [DOI: 10.1002/asia.201901020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/01/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Rahul Maity
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Himan Dev Singh
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Ankit Kumar Yadav
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Debanjan Chakraborty
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
- Centre for Research in Energy and Sustainable Materials, Centre for Energy ScienceIndian Institute of Science Education and Research Pune Dr Homi Bhabha Rd Pashan Pune, MH 411008 India
| | - Ramanathan Vaidhyanathan
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
- Centre for Research in Energy and Sustainable Materials, Centre for Energy ScienceIndian Institute of Science Education and Research Pune Dr Homi Bhabha Rd Pashan Pune, MH 411008 India
| |
Collapse
|
15
|
Zhou T, Sang Y, Sun Y, Wu C, Wang X, Tang X, Zhang T, Wang H, Xie C, Zeng D. Gas Adsorption at Metal Sites for Enhancing Gas Sensing Performance of ZnO@ZIF-71 Nanorod Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3248-3255. [PMID: 30759983 DOI: 10.1021/acs.langmuir.8b02642] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The detection of trace amount of volatile organic compounds (VOCs) has been covered by tons of researches, which are dedicated to improve the detection limit and insensitivity to humidity. In this work, we have synthesized ZnO@ZIF-71 nanorod arrays (NRAs) equipped with the adsorption effect at metal site that promoted the detection limit of ethanol and acetone, to which also have great selectivity. The gas sensor not only exhibits shorter response/recovery time (53/55% for ethanol, 48/31% for acetone), but also excellent insensitivity to humidity and improved detection limit (10× improved at 21 ppb for ethanol, 4× at 3 ppb for acetone) at low working temperature (150 °C). By the analysis of in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and calculation of density functional theory (DFT), the mechanism of enhanced gas sensing performance from ZnO@ZIF-71 NRAs is proved. It shows ethanol and acetone gas molecules can be adsorbed at the metal sites of ZIF-71. This work provides a new idea to improve the detection limit and humidity-insensitivity of gas sensor toward specific gas molecules.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials , Hubei University , Wuhan 430062 , China
| | - Yutong Sang
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
| | - Yanling Sun
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
| | - Congyi Wu
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
| | - Xiaoxia Wang
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
| | - Xing Tang
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
| | - Tian Zhang
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
| | - Hao Wang
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
| | - Changsheng Xie
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
| | - Dawen Zeng
- State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials , Hubei University , Wuhan 430062 , China
| |
Collapse
|
16
|
Asgari M, Semino R, Schouwink P, Kochetygov I, Trukhina O, Tarver JD, Bulut S, Yang S, Brown CM, Ceriotti M, Queen WL. An In-Situ Neutron Diffraction and DFT Study of Hydrogen Adsorption in a Sodalite-Type Metal-Organic Framework, Cu-BTTri. Eur J Inorg Chem 2019; 2019:10.1002/ejic.201801253. [PMID: 38903611 PMCID: PMC11188034 DOI: 10.1002/ejic.201801253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 06/22/2024]
Abstract
Herein we present a detailed study of the hydrogen adsorption properties of Cu-BTTri, a robust crystalline metal-organic framework containing open metal-coordination sites. Diffraction techniques, carried out on the activated framework, reveal a structure that is different from what was previously reported. Further, combining standard hydrogen adsorption measurements with in-situ neutron diffraction techniques provides molecular level insight into the hydrogen adsorption process. The diffraction experiments unveil the location of four D2 adsorption sites in Cu-BTTri and shed light on the structural features that promote hydrogen adsorption in this material. Density functional theory (DFT), used to predict the location and strength of binding sites, corroborate the experimental findings. By decomposing binding energies in different sites in various energetic contributions, we show that van der Waals interactions play a crucial role, suggesting a possible route to enhancing the binding energy around open metal coordination sites.
Collapse
Affiliation(s)
- Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Rocio Semino
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Pascal Schouwink
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Ilia Kochetygov
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Olga Trukhina
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Jacob D Tarver
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland, 20899, USA
- National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Safak Bulut
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Shuliang Yang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Craig M Brown
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland, 20899, USA
| | - Michele Ceriotti
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| |
Collapse
|
17
|
Lin TR, Lee CH, Lan YC, Mendiratta S, Lai LL, Wu JY, Chi KM, Lu KL. Paddlewheel SBU based Zn MOFs: Syntheses, Structural Diversity, and CO₂ Adsorption Properties. Polymers (Basel) 2018; 10:E1398. [PMID: 30961323 PMCID: PMC6401755 DOI: 10.3390/polym10121398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022] Open
Abstract
Four Zn metal⁻organic frameworks (MOFs), {[Zn₂(2,6-ndc)₂(2-Pn)]·DMF}n (1), {[Zn₂(cca)₂(2-Pn)]·DMF}n (2), {[Zn₂(thdc)₂(2-Pn)]·3DMF}n (3), and {[Zn₂(1,4-ndc)₂(2-Pn)]·1.5DMF}n (4), were synthesized from zinc nitrate and N,N'-bis(pyridin-2-yl)benzene-1,4-diamine (2-Pn) with naphthalene-2,6-dicarboxylic acid (2,6-H₂ndc), 4-carboxycinnamic acid (H₂cca), 2,5-thiophenedicarboxylic acid (H₂thdc), and naphthalene-1,4-dicarboxylic acid (1,4-H₂ndc), respectively. MOFs 1⁻4 were all constructed from similar dinuclear paddlewheel {Zn₂(COO)₄} clusters and resulted in the formation of three kinds of uninodal 6-connected non-interpenetrated frameworks. MOFs 1 and 2 suit a topologic 4⁸·6⁷-net with 17.6% and 16.8% extra-framework voids, respectively, 3 adopts a pillared-layer open framework of 4⁸·6⁶·8-topology with sufficient free voids of 39.9%, and 4 features a pcu-type pillared-layer framework of 412·6³-topology with sufficient free voids of 30.9%. CO₂ sorption studies exhibited typical reversible type I isotherms with CO₂ uptakes of 55.1, 84.6, and 64.3 cm³ g-1 at 195 K and P/P₀ =1 for the activated materials 1', 2', and 4', respectively. The coverage-dependent isosteric heat of CO₂ adsorption (Qst) gave commonly decreased Qst traces with increasing CO₂ uptake for all the three materials and showed an adsorption enthalpy of 32.5 kJ mol-1 for 1', 38.3 kJ mol-1 for 2', and 23.5 kJ mol-1 for 4' at zero coverage.
Collapse
Affiliation(s)
- Ting-Ru Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Cheng-Hua Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Chen Lan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan.
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan.
| | - Kai-Ming Chi
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
18
|
Niu Z, Guan Q, Shi Y, Chen Y, Chen Q, Kong Z, Ning P, Tian S, Miao R. A lithium-modified zirconium-based metal organic framework (UiO-66) for efficient CO2 adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj04945a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adsorption mechanism of carbon dioxide (CO2) on Li/UiO-66 was studied by an in situ DRIFTS study.
Collapse
Affiliation(s)
- Zhaodong Niu
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- P. R. China
| | - Qingqing Guan
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- P. R. China
- Collaborative Innovation Center of Western Typical Industry Environmental Pollution Control
| | - Yuzhen Shi
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- P. R. China
| | - Yuan Chen
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Qiuling Chen
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- P. R. China
| | - Zhaoni Kong
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- P. R. China
| | - Ping Ning
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- P. R. China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- P. R. China
| | - Rongrong Miao
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- P. R. China
| |
Collapse
|