1
|
Deng C, Liang J, Wang Y, Huang W. Reduction of Thorium Tris(amido)arene Complexes: Reversible Double and Single C-C Couplings. Inorg Chem 2024; 63:9676-9686. [PMID: 38696837 DOI: 10.1021/acs.inorgchem.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The reduction chemistry of thorium complexes is less explored compared to that of their uranium counterparts. Here, we report the synthesis, characterization, and reduction chemistry of two thorium(IV) complexes, (AdTPBN3)ThCl (1) and (DtbpTPBN3)ThCl(THF) (4) [RTPBN3 = 1,3,5-[2-(RN)C6H4]3C6H3; R = 1-adamantyl (Ad) or 3,5-di-tert-butylphenyl (Dtbp); THF = tetrahydrofuran], supported by tripodal tris(amido)arene ligands with different N-substituents. Reduction of 1 with excessive potassium in n-pentane yielded a double C-C coupling product, [(AdTPBN3)ThK(Et2O)2]2 (3), featuring a unique tetraanionic tricyclic core. On the other hand, reduction of 4 with 1 equiv of KC8 in hexanes/1,2-dimethoxyethane (DME) afforded a single C-C coupling product, [(DtbpTPBN3)Th(DME)]2 (5), with a dianionic bis(cyclohexadienyl) core. The solid- and solution-state structures of dinuclear thorium(IV) complexes 3 and 5 were established by X-ray crystallography and NMR spectroscopy. In addition, reactivity studies show that 3 and 5 can behave as thorium(II) and thorium(III) synthons to reduce organic halides. For instance, 3 and 5 are able to reduce 4 and 2 equiv of benzyl chloride, respectively, to regenerate 1 and 4 with concomitant formation of dibenzyl. Reversible C-C couplings under redox conditions provide an alternative approach to exploiting the potential of thorium arene complexes in redox chemistry.
Collapse
Affiliation(s)
- Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Münster K, Baabe D, Kintzel B, Böhme M, Plass W, Raeder J, Walter MD. Low-Coordinate Iron(II) Amido Half-Sandwich Complexes with Large Internal Magnetic Hyperfine Fields. Inorg Chem 2022; 61:18883-18898. [DOI: 10.1021/acs.inorgchem.2c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Katharina Münster
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Benjamin Kintzel
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Jan Raeder
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| |
Collapse
|
3
|
Bootsma J, Browne WR, Flapper J, de Bruin B. Photoactive Fe Catalyst for Light-Triggered Alkyd Paint Curing. JACS AU 2022; 2:531-540. [PMID: 35253002 PMCID: PMC8889616 DOI: 10.1021/jacsau.1c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Herein, we show that the photoactive complexes [(Cp)Fe(arene)]+ (Cp = cyclopentadienyl; arene = C6H6, C6H5Me) act as latent catalysts that allow for photochemical control over the onset of alkyd paint curing, without the need for antiskinning agents such as the volatile 2-butanone oxime normally used to prevent curing during paint storage. The highly soluble neutral complexes [(Cp)Fe(Ch)] and [(Cp)Fe(Ch')] (Ch = cyclohexadienyl, Ch' = methylcyclohexadienyl) readily convert to the photoactive complexes [(Cp)Fe(arene)]+ upon oxidation in alkyd, allowing the latter to be dosed in a wide range of concentrations. Infrared and Raman studies show similar spectral changes of the alkyd paint matrix as have been observed in alkyd curing mediated by well-known, industrially applied cobalt- and manganese-based catalyst Co(neodecanoate)2 and [(Me3TACN)2Mn2(μ-OOCR)3](OOCR). The [(Cp)Fe(Ch)]/[(Cp)Fe(arene)]+ system performs equally well as these cobalt- and manganese-based catalysts in terms of drying time and outperform the manganese catalyst by showing a hardness development (increase) similar to that of the cobalt-based catalyst. Based on electron paramagnetic resonance and light-activity studies, we propose that photolysis of [(Cp)Fe(arene)]+ generates short-lived active FeII species, explaining the desired latency. The [(Cp)Fe(Ch)]/[(Cp)Fe(arene)]+ alkyd curing systems presented herein are unique examples of intrinsically latent paint curing catalysts that (1) are based on an abundant and harmless transition metal (Fe), (2) do not require any antiskinning agents, and (3) show favorable performance in terms of drying times and hardness development.
Collapse
Affiliation(s)
- Johan Bootsma
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis Group, Van ’t Hoff
Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry group, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Jitte Flapper
- Akzo
Nobel Decorative Coatings B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Bas de Bruin
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis Group, Van ’t Hoff
Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Bai X, Mei T, Yang D, Su L, Wang B, Qu J. Synthesis, characterization and reactivity toward small molecules of a diiron tetrahydrido bridged complex. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Reiners M, Baabe D, Münster K, Zaretzke MK, Freytag M, Jones PG, Coppel Y, Bontemps S, Rosal ID, Maron L, Walter MD. NH 3 formation from N 2 and H 2 mediated by molecular tri-iron complexes. Nat Chem 2020; 12:740-746. [PMID: 32601410 DOI: 10.1038/s41557-020-0483-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/05/2020] [Indexed: 01/27/2023]
Abstract
Living systems carry out the reduction of N2 to ammonia (NH3) through a series of protonation and electron transfer steps under ambient conditions using the enzyme nitrogenase. In the chemical industry, the Haber-Bosch process hydrogenates N2 but requires high temperatures and pressures. Both processes rely on iron-based catalysts, but molecular iron complexes that promote the formation of NH3 on addition of H2 to N2 have remained difficult to devise. Here, we isolate the tri(iron)bis(nitrido) complex [(Cp'Fe)3(μ3-N)2] (in which Cp' = η5-1,2,4-(Me3C)3C5H2), which is prepared by reduction of [Cp'Fe(μ-I)]2 under an N2 atmosphere and comprises three iron centres bridged by two μ3-nitrido ligands. In solution, this complex reacts with H2 at ambient temperature (22 °C) and low pressure (1 or 4 bar) to form NH3. In the solid state, it is converted into the tri(iron)bis(imido) species, [(Cp'Fe)3(μ3-NH)2], by addition of H2 (10 bar) through an unusual solid-gas, single-crystal-to-single-crystal transformation. In solution, [(Cp'Fe)3(μ3-NH)2] further reacts with H2 or H+ to form NH3.
Collapse
Affiliation(s)
- Matthias Reiners
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Dirk Baabe
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Katharina Münster
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Marc-Kevin Zaretzke
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Matthias Freytag
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Yannick Coppel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Toulouse, France
| | - Sébastien Bontemps
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Toulouse, France
| | - Iker Del Rosal
- Université de Toulouse, INSA-UPS-LPCNO and CNRS-LPCNO, Toulouse, France
| | - Laurent Maron
- Université de Toulouse, INSA-UPS-LPCNO and CNRS-LPCNO, Toulouse, France
| | - Marc D Walter
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany.
| |
Collapse
|
6
|
Peters M, Baabe D, Maekawa M, Bockfeld D, Zaretzke MK, Tamm M, Walter MD. Pogo-Stick Iron and Cobalt Complexes: Synthesis, Structures, and Magnetic Properties. Inorg Chem 2019; 58:16475-16486. [PMID: 31769666 DOI: 10.1021/acs.inorgchem.9b02411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, structures, and magnetic properties of monomeric half-sandwich iron and cobalt imidazolin-2-iminato complexes have been comprehensively investigated. Salt metathesis reactions of [Cp'M(μ-I)]2 (1-M, M = Fe, Co; Cp' = η5-1,2,4-tri-tert-butylcyclopentadienyl) with [ImDippNLi]2 (ImDippN = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) furnishes the terminal half-sandwich compounds [Cp'M(NImDipp)] (2-M, M = Fe, Co), which can be regarded as models for elusive half-sandwich iron and cobalt imido complexes. X-ray diffraction analysis confirmed the structure motif of a one-legged piano stool. Complex 2-Co can also be prepared by an acid-base reaction between [Cp'Co{N(SiMe3)2}] (3-Co) and ImDippNH. The electronic and magnetic properties of 2-M and 3-Co were probed by 57Fe Mössbauer spectroscopy (M = Fe), X-band EPR spectroscopy (M = Co), and solid-state magnetic susceptibility measurements. In particular, the central metal atom adopts a high-spin (S = 2) state in 2-Fe, while the cobalt complex 2-Co represents a rare example of a Co(II) species with a coordination number different from six displaying a low-spin to high-spin spin-crossover (SCO) behavior. The experimental observations are complemented by DFT calculations.
Collapse
Affiliation(s)
- Marius Peters
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Miyuki Maekawa
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Marc-Kevin Zaretzke
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| |
Collapse
|
7
|
Raeder J, Reiners M, Baumgarten R, Münster K, Baabe D, Freytag M, Jones PG, Walter MD. Synthesis and molecular structure of pentadienyl complexes of the rare-earth metals. Dalton Trans 2018; 47:14468-14482. [DOI: 10.1039/c8dt03123a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In combination with small and difficult to reduce rare-earth metals pdl′ undergoes CH-bond activations instead of sterically induced reductions to form dimeric complexes with a unique bridging six-membered metallacycle as the central structural motif.
Collapse
Affiliation(s)
- Jan Raeder
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Matthias Reiners
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Robert Baumgarten
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Katharina Münster
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Dirk Baabe
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Matthias Freytag
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Peter G. Jones
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Marc D. Walter
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| |
Collapse
|