1
|
Gao Y, Yue X, Dong Y, Zheng Q, Lin D. High-efficiency activated phosphorus-doped Ni 2S 3/Co 3S 4/ZnS nanowire/nanosheet arrays for energy storage of supercapacitors. J Colloid Interface Sci 2024; 658:441-449. [PMID: 38118190 DOI: 10.1016/j.jcis.2023.12.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
Transition metal sulfides (TMS) have been considered as a promising group of electrode materials for supercapacitors as a result of their strong redox activity, but high volumetric strain of the materials during electrochemical reactions causes rapid structural collapse and severe capacity loss. Herein, we have synthesized phosphorus-doped (P-doped) Ni2S3/Co3S4/ZnS battery-type nanowire/nanosheet arrays as an advanced cathode for supercapacitor through a two-step process of hydrothermal and annealing treatments. The material has a one-dimensional nanowire/two-dimensional nanosheet-like coexisting microscopic morphology, which facilitates the exposure of abundant active centers and promotes the transport and migration of ions in the electrolyte, while the doping of P significantly enhances the conductivity of the electrode material. Simultaneously, the element phosphorus with similar atomic radii and electronegativity to sulfur may act as electron donors to regulate the electron distribution, thus providing more effective electrochemically active sites. In gratitude to the synergistic effect of microstructure optimization and electronic structure regulation induced by the doing of P, the P-Ni2S3/Co3S4/ZnS nanoarrays provide a superior capacity of 2716 F g-1 at 1 A/g, while the assembled P-Ni2S3/Co3S4/ZnS//AC asymmetric supercapacitor exhibits a high energy density of 48.2 Wh kg-1 at a power density of 800 W kg-1 with the capacity retention of 89 % after 9000 cycles. This work reveals a possible method for developing high-performance transition metal sulfide-based battery-like electrode materials for supercapacitors through microstructure optimization and electronic structure regulation.
Collapse
Affiliation(s)
- Yongbo Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Xiaoqiu Yue
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Yingxia Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
| |
Collapse
|
2
|
Praveen AE, Mishra V, Ganguli S, Chandrasekar A, Mahalingam V. Phosphorus-Induced One-Step Synthesis of NiCo 2S 4 Electrode Material for Efficient Hydrazine-Assisted Hydrogen Production. Inorg Chem 2023; 62:16149-16160. [PMID: 37729545 DOI: 10.1021/acs.inorgchem.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rational control of the reaction parameters is highly important for synthesizing active electrocatalysts. NiCo2S4 is an excellent spinel-based electrocatalyst that is usually prepared through a two-step synthesis. Herein, a one-step hydrothermal route is reported to synthesize P-incorporated NiCo2S4. We discovered that the inclusion of P caused formation of the NiCo2S4 phase in a single step. Computational studies were performed to comprehend the mechanism of phase formation and to examine the energetics of lattice formation. Upon incorporation of the optimum amount of P, the stability of the NiCo2S4 lattice was found to increase steadily. In addition, the Bader charges on both the metal atoms Co and Ni in NiCo2S4 and P-incorporated NiCo2S4 were compared. The results show that replacing S with the optimal amount of P leads to a reduction in charge on both metal atoms, which can contribute to a more stable lattice formation. Further, the electrochemical performance of the as-synthesized materials was evaluated. Among the as-synthesized nickel cobalt sulfides, P-incorporated NiCo2S4 exhibits excellent activity toward hydrazine oxidation with an onset potential of 0.15 V vs RHE without the assistance of electrochemically active substrates like Ni or Co foam. In addition to the facile synthesis method, P-incorporated NiCo2S4 requires a very low cell voltage of 0.24 V to attain a current density of 10 mA cm-2 for hydrazine-assisted hydrogen production in a two-electrode cell. The free energy profile of the stepwise HzOR has been investigated in detail. The computational results suggested that HzOR on P-incorporated NiCo2S4 was more feasible than HzOR on NiCo2S4, and these findings corroborate the experimental evidence.
Collapse
Affiliation(s)
- Athma E Praveen
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Viplove Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sagar Ganguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
- Ångström Laboratory, Department of Chemistry, Uppsala University, SE-75120 Uppsala, Sweden
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
3
|
Su S, Sun L, Xie F, Qian J, Zhang Y. Phosphorus-doped Ni−Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
4
|
Lang X, Chu D, Wang Y, Ge D, Chen X. Defect Surface Engineering of Hollow NiCo 2S 4 Nanoprisms towards Performance-Enhanced Non-Enzymatic Glucose Oxidation. BIOSENSORS 2022; 12:823. [PMID: 36290962 PMCID: PMC9599600 DOI: 10.3390/bios12100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Transition metal sulfides have been explored as electrode materials for non-enzymatic detection. In this work, we investigated the effects of phosphorus doping on the electrochemical performances of NiCo2S4 electrodes (P-NiCo2S4) towards glucose oxidation. The fabricated non-enzymatic biosensor displayed better sensing performances than pristine NiCo2S4, with a good sensitivity of 250 µA mM-1 cm-2, a low detection limit (LOD) of 0.46 µM (S/N = 3), a wide linear range of 0.001 to 5.2 mM, and high selectivity. Moreover, P-NiCo2S4 demonstrated its feasibility for glucose determination for practical sample testing. This is due to the fact that the synergetic effects between Ni and Co species, and the partial substitution of S vacancies with P can help to increase electronic conductivity, enrich binary electroactive sites, and facilitate surface electroactivity. Thus, it is found that the incorporation of dopants into NiCo2S4 is an effective strategy to improve the electrochemical activity of host materials.
Collapse
Affiliation(s)
- Xiaomin Lang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Dandan Chu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yan Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Danhua Ge
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| |
Collapse
|
5
|
Self-assembly and controllable synthesis of high-rate porous NiCo2S4 electrode materials for asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Liu Y, Chen T, Zhang Q, Jiang R. A Simple Hydrothermal Synthesis of Flower‐like NiCo
2
S
4
@Biomass‐graded Porous Carbon with Structural Synergy and Excellent Capacitive Performance. ChemistrySelect 2022. [DOI: 10.1002/slct.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan‐zheng Liu
- School of Materials Science and Engineering Shandong Jianzhu University Jinan 250101 P. R. China
| | - Ting Chen
- School of Science Shandong Jianzhu University Jinan 250101 P. R. China
| | - Qiang Zhang
- School of Science Shandong Jianzhu University Jinan 250101 P. R. China
| | - Rong‐yan Jiang
- School of Materials Science and Engineering Shandong Jianzhu University Jinan 250101 P. R. China
| |
Collapse
|
7
|
Facile Synthesis of NiCo2S4/rGO Composites in a Micro-Impinging Stream Reactor for Energy Storage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using a process-enhanced micro-impinging stream reactor (MISR) and a co-precipitation route, NiCo2S4 and NiCo2S4/rGO electrode materials were successfully prepared, respectively. Owing to its excellent micromixing performance, the MISR-prepared NiCo2S4/rGO composites had a smaller size and less agglomeration than the same composites prepared in a traditional stirred reactor (STR). The specific capacity of the MISR-prepared composites was as high as 198.0 mAh g−1 under the current density of 1 A g−1. The cycling stability of the composites also improved significantly after being modified with reduced graphene oxide (rGO), and they displayed a fine cycling stability, which maintained a retention rate of 83.6% after 1000 cycles of charging and discharging.
Collapse
|
8
|
Peng L, Tuo Y, Lin Y, Jia C, Wang S, Zhou Y, Zhang J. Synthesis of P-doped NiS as an electrode material for supercapacitors with enhanced rate capability and cycling stability. NEW J CHEM 2022. [DOI: 10.1039/d2nj00107a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coral-like P-doped NiS nanocrystals were successfully synthesized by a two-step solvent-thermal method. The P-doped NiS electrode presented enhanced high capacitance, rate performance, and cycle life.
Collapse
Affiliation(s)
- Li'an Peng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yongxiao Tuo
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Lin
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Cuiping Jia
- College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shutao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
9
|
Zeeshan M, Shahid M. State of the art developments and prospects of metal-organic frameworks for energy applications. Dalton Trans 2021; 51:1675-1723. [PMID: 34919099 DOI: 10.1039/d1dt03113a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The progress on technologies for the cleaner and ecological transformation and storage of energy to combat effluence or pollution and the impending energy dilemma has recently attracted interest from energy research groups, particularly in the field of coordination chemistry, among inorganic chemists. Carriers for storing energy or facilitating mass and e- transport are considered significant for energy conversion. Accordingly, considering their properties such as large surface area, low cost, customizable pore diameter, tunable topologies, low densities, and variable frameworks, MOFs (metal-organic frameworks) and their derivatives are well-suited for this purpose. MOFs are an innovative category of porous and crystalline materials, which have gained significant interest in recent years. Thus, herein, we highlight the state of the art progress on MOFs for energy-based applications, as perfect compounds and elements in compound assemblies for converting solar energy, lithium-ion arrays, fuel devices, hydrogen production, photocatalytic CO2 reduction, proton conduction, etc. In addition, the substantial progress achieved in the production of various composites and derivatives containing MOFs with particular focus on supercapacitors and gas adsorption and storage is summarized, concentrating on the correlation between their coordination structural frameworks and applications in the field of energy. The current improved strategies, challenges, and future prospects are also presented in view of the coordination chemistry governing the structural modification of MOFs for energy applications.
Collapse
Affiliation(s)
- Mohd Zeeshan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
10
|
Wan L, Wang Y, Du C, Chen J, Xie M, Wu Y, Zhang Y. NiAlP@Cobalt substituted nickel carbonate hydroxide heterostructure engineered for enhanced supercapacitor performance. J Colloid Interface Sci 2021; 609:1-11. [PMID: 34890947 DOI: 10.1016/j.jcis.2021.11.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
Transitional metal phosphides with high electrical conductivity and superb physicochemical features have been recognized as ideal battery-type electrode materials for outstanding performance supercapacitors. However, their specific capacities and structural stability are needed to be enhanced for large-scale practical applications. To overcome these shortcomings, we fabricated heterostructured NiAlP@cobalt substituted nickel carbonate hydroxide (Co-NiCH) nanosheet arrays by sequential a hydrothermal reaction, a phosphorization treatment, and a second hydrothermal reaction. Profiting from its core-shell porous nanostructure and synergistic effect of NiAlP with high electrical conductivity and Co-NiCH with high redox reactivity, the resultant NiAlP@Co-NiCH electrode delivers a large specific capacity of 825.7C g-1 at 1 A g-1, excellent rate capability with 78.9% capacity retention and long lifespan, superior to those of pure NiAlP and Co-NiCH electrodes. Additionally, an aqueous asymmetric supercapacitor device is constructed by NiAlP@Co-NiCH and lotus pollen-derived hierarchical porous carbon, which demonstrates a large energy density of 82.3 Wh kg-1 at a power density of 739.8 W kg-1, and wonderful cycle stability with 88.2% capacity retention after 10,000 cycles. This work proposes a feasible strategy on construction of transitional metal phosphide-based heterojunctions for advanced asymmetric supercapacitor devices.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| | - Yameng Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China; College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yapan Wu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
11
|
Wang X, Xu P, Zhang P, Ma S. Preparation of Electrode Materials Based on Carbon Cloth via Hydrothermal Method and Their Application in Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7148. [PMID: 34885303 PMCID: PMC8658651 DOI: 10.3390/ma14237148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Supercapacitors have the unique advantages of high power density, fast charge and discharge rates, long cycle life, high safety, and reliability, and are increasingly being used for applications including automobiles, rail transit, communication equipment, digital electronics, and aerospace equipment. The supercapacitor industry is currently in a stage of rapid development; great breakthroughs have also been made in improving the performance of supercapacitors and the expansion of their application. Electrode technology is the core of supercapacitors. Transition-metal compounds have a relatively high theoretical capacity and have received widespread attention as electrode materials for supercapacitors. In addition, there is a synergistic effect between the different components of various electrode composite materials. Due to their superior electrochemical performance, supercapacitors are receiving increasing research attention. Flexible supercapacitors have been hailed for their good plasticity, resulting in a development boom. This review article mainly outlines the development process of various electrode materials, including carbon materials, conductive polymers, metal compounds, and composite materials, as well as flexible electrode materials based on carbon cloth.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (X.W.); (P.Z.); (S.M.)
| | - Peiquan Xu
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (X.W.); (P.Z.); (S.M.)
- Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology, Shanghai 201620, China
| | - Pengyu Zhang
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (X.W.); (P.Z.); (S.M.)
| | - Shuyue Ma
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (X.W.); (P.Z.); (S.M.)
| |
Collapse
|
12
|
Min K, Yoo R, Kim S, Kim H, Shim SE, Lim D, Baeck SH. Facile synthesis of P-doped NiCo2S4 nanoneedles supported on Ni foam as highly efficient electrocatalysts for alkaline oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Xu X, Yin X, Fu J, Ke D. Structural Modulation on NiCo 2 S 4 Nanoarray by N Doping to Enhance 2e-ORR Selectivity for Photothermal AOPs and Zn-O 2 Batteries*. Chemistry 2021; 27:14451-14460. [PMID: 34346117 DOI: 10.1002/chem.202101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/13/2022]
Abstract
As a H2 O2 generator, a 2e- oxygen reduction reaction active electrocatalyst plays an important role in the advanced oxidation process to degrade organic pollutants in sewage. To enhance the tendency of NiCo2 S4 towards the 2e- reduction reaction, N atoms are doped in its structure and replace S2- . The result implies that this weakens the interaction between NiCo2 S4 and OOH*, suppresses O-O bond breaking and enhances H2 O2 selectivity. This electrocatalyst also shows photothermal effect. Under photothermal heating, H2 O2 produced by the oxidation reduction reaction can decompose and releaseOH, which degrades organic pollutants through the advanced oxidation process. Photothermal effect induced by the advance oxidation process shows obvious advantages over the traditional Fenton reaction, such as wide pH adaptation scope and low secondary pollutant due to its Fe2+ free character. With Zn as anode and the electrocatalyst as cathode material, a Zn-O2 battery is assembled. It achieves electricity generation and photothermal effect induced by the advance oxidation process simultaneously.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China.,Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang, Liaoning, 110819, China)
| | - Xunkai Yin
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Jingnuo Fu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Di Ke
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| |
Collapse
|
14
|
Phonsuksawang P, Khajondetchairit P, Ngamchuea K, Butburee T, Sattayaporn S, Chanlek N, Suthirakun S, Siritanon T. Enhancing performance of NiCo2S4/Ni3S2 supercapacitor electrode by Mn doping. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137634] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Bi J, Wu H, Wang L, Pang X, Li Y, Meng Q, Wang L. A mass production paper-making method to prepare superior flexible electrodes and asymmetric supercapacitors with high volumetric capacitance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Bian R, Song D, Si W, Zhang T, Zhang Y, Lu P, Hou F, Liang J. Carbon Nanotubes@Nickel Cobalt Sulfide Nanosheets for High‐Performance Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruilin Bian
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Dan Song
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Wenping Si
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Yuxin Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Pengyi Lu
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education School of Materials Science and Engineering Tianjin University Tianjin 300072 China
- Institute for Superconducting & Electronic Materials Australian Institute of Innovative Materials University of Wollongong North Wollongong NSW 2500 Australia
| |
Collapse
|
17
|
Arian R, Zardkhoshoui AM, Hosseiny Davarani SS. Rational Construction of Core‐Shell Ni−Mn−Co−S@Co(OH)
2
Nanoarrays toward High‐Performance Hybrid Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ramtin Arian
- Department of ChemistryShahid Beheshti University, G. C. 1983963113, Evin Tehran Iran
| | | | | |
Collapse
|
18
|
Singh A, Ojha SK, Singh M, Ojha AK. Controlled synthesis of NiCo2S4@NiCo2O4 core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136349] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Effects of Fe doping on enhancing electrochemical properties of NiCo2S4 supercapacitor electrode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Redox electroactive group-modified carbon cloth as flexible electrode for high performance solid-state supercapacitors. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Wang D, Tian L, Huang J, Li D, Liu J, Xu Y, Ke H, Wei Q. “One for two” strategy to prepare MOF-derived NiCo2S4 nanorods grown on carbon cloth for high-performance asymmetric supercapacitors and efficient oxygen evolution reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135636] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Le K, Gao M, Liu W, Liu J, Wang Z, Wang F, Murugadoss V, Wu S, Ding T, Guo Z. MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134826] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Wang H, Liang M, Ma C, Shi W, Duan D, He G, Sun Z. Novel dealloying-fabricated NiCo 2S 4 nanoparticles with excellent cycling performance for supercapacitors. NANOTECHNOLOGY 2019; 30:235402. [PMID: 30743256 DOI: 10.1088/1361-6528/ab0605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, NiCo2S4 nanoparticles for supercapacitors are successfully synthesized with a top-down strategy, using a novel dealloying method with an ion exchange reaction. The surface morphology and x-ray diffraction investigations demonstrated that NiCo2S4 nanoparticles are interconnected by ligaments of the synthesized sample. The dealloyed NiCo2S4 shows an enhanced electrochemical performance of about 1132.5 F g-1 at 0.5 A g-1; kinetic analysis implies a surface-controlled contribution from NiCo2S4 (53.86% capacitive contributions). Notably, the NiCo2S4//AC (active carbon) device displays a comparatively high energy density (22.83 Wh kg-1), maximum power density (1327.1 W kg-1) and superior cycling performance (capacitance retention of 108% after 30 000 cycles).
Collapse
Affiliation(s)
- Haiyang Wang
- School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Mohammadi Zardkhoshoui A, Hosseiny Davarani SS, Asgharinezhad AA. Designing graphene-wrapped NiCo2Se4 microspheres with petal-like FeS2 toward flexible asymmetric all-solid-state supercapacitors. Dalton Trans 2019; 48:4274-4282. [DOI: 10.1039/c9dt00009g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective and accessible method is demonstrated for the construction of electrodes from graphene-wrapped NiCo2Se4 microspheres and petal-like FeS2 with excellent durability for flexible all-solid-state asymmetric supercapacitors.
Collapse
|
25
|
Guo D, Song X, Tan L, Ma H, Pang H, Wang X, Zhang L. Metal-Organic Framework Template-Directed Fabrication of Well-Aligned Pentagon-like Hollow Transition-Metal Sulfides as the Anode and Cathode for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42621-42629. [PMID: 30418014 DOI: 10.1021/acsami.8b14839] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Given the exceptional specific surface area, geometry, and periodic porosity, transition-metal sulfides derived from crystalline metal-organic frameworks have spurred great interest in energy storage systems. Herein, employing a different sulfurization process, well-aligned NiCo2S4 and CoS2 nanoarrays with a hollow/porous configuration derived from pentagon-like ZIF-67 are successfully designed and constructed on Ni foam. The hollow/porous structure grown on a conductive matrix can significantly improve electroactive sites, shorten charge/ion diffusion length, and enhance mass/electron transfer. Consequently, the obtained NiCo2S4 possesses an excellent specific capacitance of 939 C/g, a fast charge/discharge rate, and a favorable life span. An advanced asymmetrical supercapacitor is fabricated by engaging NiCo2S4 and CoS2 as cathode and anode materials, respectively, with a well-separated potential window. The obtained device delivers an exceptional energy density of 55.8 W h/kg at 695.2 W/kg, which is highly considerable to the recent transition metal sulfide-based devices. This facile tactic could be employed to construct other electrode materials with superior electrochemical properties.
Collapse
Affiliation(s)
- Dongxuan Guo
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , China
| | - Xiumei Song
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , P. R. China
| | - Lichao Tan
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , China
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education , Harbin Engineering University , Harbin 150001 , China
| | - Huiyuan Ma
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , China
| | - Haijun Pang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , China
| | - Xinming Wang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , China
| | - Lulu Zhang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , China
| |
Collapse
|