1
|
He Y, Huang YY, Fu JH, Liu Y, Wu XT, Sheng TL. Influence of the electronic effect of an ancillary ligand on MMCT and LMCT in localized cyanide-bridged complexes containing non-innocent ligands. Dalton Trans 2022; 51:18099-18108. [DOI: 10.1039/d2dt03048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For bimetallic MV complexes with non-innocent ligands, the MMCT energy in the localized system decreases significantly while the LMCT energy in the delocalized moiety increases slightly as the electronic effect of ancillary ligands is enhanced.
Collapse
Affiliation(s)
- Yong He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ying-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jin-Hui Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
2
|
Xu QD, Zhang LT, Zeng C, Yang YY, Su SD, Hu SM, Wu XT, Sheng TL. Influence of Fine Ligand Substitution Modification of the Isocyanidometal Bridge on Metal-to-Metal Charge Transfer Properties in Class II-III Mixed Valence Complexes. Chemistry 2021; 27:11183-11194. [PMID: 33939198 DOI: 10.1002/chem.202101194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/08/2022]
Abstract
The synthesis and characterization of Class II-III mixed valence complexes have been an interesting topic due to their special intermediate behaviour between localized and delocalized mixed valence complexes. To investigate the influence of the isocyanidometal bridge on metal-to-metal charge transfer (MMCT) properties, a family of new isocyanidometal-bridged complexes and their one-electron oxidation products cis-[Cp(dppe)Fe-CN-Ru(L)2 -NC-Fe(dppe)Cp][PF6 ]n (n=2, 3) (Cp=1,3-cyclopentadiene, dppe=1,2-bis(diphenylphosphino)ethane, L=2,2'-bipyridine (bpy, 1[PF6 ]n ), 5,5'-dimethyl-2,2'-bipyridyl (5,5'-dmbpy, 2[PF6 ]n ) and 4,4'-dimethyl-2,2'-bipyridyl (4,4'-dmbpy, 3[PF6 ]n )) have been synthesized and fully characterized. The experimental results suggest that all the one-electron oxidation products may belong to Class II-III mixed valence complexes, supported by TDDFT calculations. With the change of the substituents of the bipyridyl ligand on the Ru centre from H, 5,5'-dimethyl to 4,4'-dimethyl, the energy of MMCT for the one-electron oxidation complexes changes in the order: 13+ <23+ <33+ , and that for the two-electron oxidation complexes decreases in the order 14+ >34+ >24+ . The potential splitting (ΔE1/2 (2)) between the two terminal Fe centres for N[PF6 ]2 are the largest potential splitting for the cyanido-bridged complexes reported so far. This work shows that the smaller potential difference between the bridging and the terminal metal centres would result in the more delocalized mixed valence complex.
Collapse
Affiliation(s)
- Qing-Dou Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lin-Tao Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China
| | - Chen Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yu-Ying Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China
| | - Shao-Dong Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China
| | - Sheng-Min Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
3
|
Xu QD, Zeng C, Su SD, Yang YY, Hu SM, Li TY, Wu XT, Sheng TL. Tuning metal to metal charge transfer properties in cyanidometal-bridged complexes by changing the auxiliary ligand on the bridge. Dalton Trans 2021; 50:6161-6169. [PMID: 33861281 DOI: 10.1039/d1dt00157d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to investigate the influence of the auxiliary ligand of the cyanidometal bridge on metal to metal charge transfer (MMCT) in cyanidometal-bridged complexes, two groups of heterotrimetallic cyanidometal-bridged complexes, trans-[Cp*(dppe)Fe-NC-Ru(L)2-CN-Fe(dppe)Cp*][PF6]n (L = bpy, 1(PF6)n; L = 4,4'-dmbpy, 2(PF6)n; n = 2, 3, 4) (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene, dppe = 1,2-bis(diphenylphosphino)ethane, bpy = 2,2'-bipyridine, 4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridyl) were synthesized and fully characterized. The MMCT of the one-electron oxidation mixed valence complexes is mainly attributed to RuII and FeII → FeIII MMCT transitions, and the MMCT of the two-electron oxidation complexes is mainly attributed to RuII → FeIII MMCT transitions. The energy of the MMCT of the four complexes decreases with the increase of the electron donating ability of the auxiliary ligand of the cyanidometal bridge. The IR, EPR, and Mössbauer spectra, and the solvent independence of MMCT characterizations indicate that the one-electron oxidation mixed valence complexes may belong to Class II-III systems, and the two-electron oxidation complexes may be localized at low temperature but delocalized at room temperature on the EPR timescale.
Collapse
Affiliation(s)
- Qing-Dou Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Chen Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shao-Dong Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Yu-Ying Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Sheng-Min Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Ting-Ya Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| |
Collapse
|
4
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Li SH, Liu Y, Yang YY, Zhang YX, Xu QD, Hu SM, Wu XT, Sheng TL. Syntheses, crystal structures and MMCT properties of cyanide-bridged binuclear Ru–Fe complexes. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|