1
|
Ghoochani SH, Hosseini HA, Sabouri Z, Soheilifar MH, Neghab HK, Hashemzadeh A, Velayati M, Darroudi M. Zn(II) porphyrin-encapsulated MIL-101 for photodynamic therapy of breast cancer cells. Lasers Med Sci 2023; 38:151. [PMID: 37378703 DOI: 10.1007/s10103-023-03813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The photodynamic treatment is a non-aggressive and clinically accepted procedure for removing selected cancer cells with the activation of a photosensitizer agent at a specific light. In this study, the zinc porphyrin (Zn[TPP]) was prepared and encapsulated into the MIL-101 (Zn[TPP]@MIL-101). It was used in photodynamic therapy (PDT) against MCF-7 breast cancer cells under a red light-emitting diode. The structure, morphology, surface area, and compositional changes were investigated using conventional characterization methods including FTIR, FESEM, EDX, and BET analyses. The MTT assay was performed under light and dark conditions to explore the ability of Zn[TPP]@MIL-101 in PDT. The results have demonstrated the IC50 of 14.3 and 81.6 mg/mL for light and dark groups, respectively. As the IC50 revealed, the Zn[TPP]@MIL-101 could efficiently eradicate cancer cells using PDT.
Collapse
Affiliation(s)
| | | | - Zahra Sabouri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Alireza Hashemzadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Velayati
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| | - Majid Darroudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
2
|
Basoccu F, Cuccu F, Caboni P, De Luca L, Porcheddu A. Mechanochemistry Frees Thiourea Dioxide (TDO) from the 'Veils' of Solvent, Exposing All Its Reactivity. Molecules 2023; 28:molecules28052239. [PMID: 36903485 PMCID: PMC10005452 DOI: 10.3390/molecules28052239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
The synthesis of nitrogen-based heterocycles has always been considered essential in developing pharmaceuticals in medicine and agriculture. This explains why various synthetic approaches have been proposed in recent decades. However performing as methods, they often imply harsh conditions or the employment of toxic solvents and dangerous reagents. Mechanochemistry is undoubtedly one of the most promising technologies currently used for reducing any possible environmental impact, addressing the worldwide interest in counteracting environmental pollution. Following this line, we propose a new mechanochemical protocol for synthesizing various heterocyclic classes by exploiting thiourea dioxide (TDO)'s reducing proprieties and electrophilic nature. Simultaneously exploiting the low cost of a component of the textile industry such as TDO and all the advantages brought by a green technique such as mechanochemistry, we plot a route towards a more sustainable and eco-friendly methodology for preparing heterocyclic moieties.
Collapse
Affiliation(s)
- Francesco Basoccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Federico Cuccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Pietro Caboni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Lidia De Luca
- Department of Chemical, Physical, Mathematical, and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| |
Collapse
|
3
|
Wu X, Wang S, Fang J, Chen H, Liu H, Li R. Enhanced Photocatalytic Efficiency in Visible-Light-Induced NADH Regeneration by Intramolecular Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38895-38904. [PMID: 35986690 DOI: 10.1021/acsami.2c11174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inspired by natural photosynthesis, photocatalytic NADH regeneration has drawn increasing interest in the recent decade as it provides a perfect approach for NAD+ reduction into NADH, which can be further consumed by oxidordeuctase for enzymatic redox reactions. However, two issues still remain unsolved in this procedure. First, the photocatalytic efficiency in NAD+ hydrogenation requires further improvement. Second, the rhodium electron mediator [Cp*Rh(bpy)H2O]2+ (M), which is always required for selective 1,4-NADH regeneration, is difficult to recover because of its good solubility in aqueous solution. Given the high price of M, it is highly wasteful and inefficient if it only spends once. Here, we report a Cp*Rh(bpy)Cl implanted conjugated microporous polymer DTS/Rh@CMPs which can be employed as a highly effective visible light photocatalysts for in situ NADH regeneration without using additional M. In addition, the insertion of Rh complex into a polymer skeleton, as demonstrated in UV-vis, fluorescence, photocurrent and electrochemical impedance, dramatically improves the light absorption capacity and the electron separation and transfer efficiency. Compared with that of DTS@CMP-1 with M, an enhanced reaction yield of 33% was determined in DTS/Rh@CMP-1 suggesting that intramolecular electron transfer has a better activity than that of intermolecular electron transfer in photocatalytic NAD+ reduction. Moreover, as the Rh complex is rooted firmly in a polymer framework, negligible Rh loss and conversion decrease in NADH regeneration are observed. When the DTS/Rh@CMP-1 was coupled with yeast alcohol dehydrogenase (YADH, from Saccharomyces cerevisiae), 1.36 mM of methanol was accumulated, implying an excellent biocompatibility of DTS/Rh@CMP-1 and a high feasibility of photobiocatalysis for formaldehyde hydrogenation.
Collapse
Affiliation(s)
- Xiewen Wu
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Song Wang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Jing Fang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Hui Chen
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
4
|
Cheng YL, Wei L, Liu SZ, Yi XG, Chen WT, Lin WS. A novel supramolecular porphyrin-fullerene compound: Crystal structure and photophysical properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Ghoochani SH, Heshmati A, Hosseini HA, Darroudi M. Adsorption and photocatalytic properties of porphyrin loaded MIL-101 (Cr) in methylene blue degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34406-34418. [PMID: 35038101 DOI: 10.1007/s11356-022-18640-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In this study for the very first time, zinc tetraphenylporphyrin (ZnTPP) was loaded into MIL-101 (Zn[TPP]@MIL-101) to perform an adsorptive and photocatalytic dye removal. The physicochemical attributes of the catalyst were thoroughly determined by the usage of XRD, FTIR, FESEM, BET, UV-vis, and inductively coupled plasma (ICP). The obtained XRD pattern exhibited the phase purity of MIL-101 and its structural stability. The solid-phase diameter of the catalyst was observed to be ~ 270.76 ± 119.95 nm, while its gas adsorption data was indicative of a decrease in the specific surface area after the loading of ZnTPP. The ICP analysis displayed the amount of encapsulated Zn[TPP] (~ 17%) in MIL-101. The UV-vis confirmed the presence of Zn[TPP] in MIL-101 with the lack of any interferences or overlaps with the λmax of methylene blue (MB) with the support. The dye removal of MB was investigated under dark conditions (adsorption) and UV light (photodegradation). The observed adsorption under dark conditions using Zn[TPP]@MIL-101 (99.27% yield) demonstrated a superior dye removal in comparison to the cases of photodegradation of MB by MIL-101 and Zn[TPP]@MIL-101 or adsorption by MIL-101. In conformity to the gathered results, [ZnTPP] was able to increase the adsorption capacity at pH = 7 at room temperature.
Collapse
Affiliation(s)
| | - Abbas Heshmati
- Chemistry Department, Payame Noor University, 19395-4697, Tehran, Iran
| | | | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Ruppert H, Sigmund LM, Greb L. Calix[4]pyrroles as ligands: recent progress with a focus on the emerging p-block element chemistry. Chem Commun (Camb) 2021; 57:11751-11763. [PMID: 34661225 DOI: 10.1039/d1cc05120b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Calix[4]pyrroles are readily synthesized in one step from pyrroles and ketones. For several decades, these macrocycles have been exploited as powerful anion receptors or ligands for transition and rare-earth metals. In contrast, calix[4]pyrrolates as ligands for p-block elements were established only in 2018. The present feature article reviews these developments, together with the recent progress on s-, d-, and f-block element complexes of the calix[4]pyrroles. Particular focus is given on the calix[4]pyrrolato aluminate and the corresponding silane, both featuring square planar-coordinated p-block elements in their highest oxidation states. These unique "anti-van't-Hoff-Le-Bel" structures introduce valuable characteristics into main-group element chemistry, such as agostic interactions or ligand-to-metal charge transfer absorptions. The most vital reactivities are highlighted, which rely on properties ranging from amphoterism, redox-activity, and a small HOMO-LUMO gap up to the ability to provide a platform for additional external stimuli. Overall, these developments underscore the beneficial impact of structural constraint of p-block elements and element-ligand cooperativity to enhance the functionality of the most abundant elements in their native oxidation states.
Collapse
Affiliation(s)
- Heiko Ruppert
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Lukas M Sigmund
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
kechich A, Soury R, Jabli M, Alenezi KM, Philouze C, Nasri H. Synthesis of novel bis(cyano) meso-tetraphenylporphyrinato-chromium(III), [K(2 2 2)] [CrIII(TPP)(CN)2] 2.(C7H6O2) (III), and (Chloro) meso-tetraphenylporphyrinato-chromium(III), [CrIII(TPP)Cl] (II): Spectroscopic, physico-chemical, and decolorization properties. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Sun P, Lin S, Guo H, Su J, Shi L. A Highly Dispersed Copper Nanoparticles Catalyst with a Large Number of Weak Acid Centers for Efficiently Synthesizing the High Value-Added 3-Methylindole by Aniline and Biomass-Derived Glycerin. Catal Letters 2021. [DOI: 10.1007/s10562-020-03308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Anjali K, Ganesh V, Christopher J, Sakthivel A. Copper based macromolecular catalysts for the hydroxylation of phenols. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, Al‐Muhtaseb AH, Singh G, Sakthivel A, Vinu A. Recent Advances in the Preparation and Applications of Organo‐functionalized Porous Materials. Chem Asian J 2020; 15:2588-2621. [DOI: 10.1002/asia.202000651] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Rekha Yadav
- Department of Chemistry Sri Venkateswara College University of Delhi Delhi 110021 India
| | - Thangaraj Baskaran
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Anjali Kaiprathu
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Maqsood Ahmed
- Department of Chemistry University of Delhi Delhi India
| | | | - Stalin Joseph
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | - Ala'a H. Al‐Muhtaseb
- Department of Petroleum and Chemical Engineering College of Engineering Sultan Qaboos University Muscat 123 P.O.Box 33 Oman
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | | | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| |
Collapse
|
12
|
Chen WT. Structure and photophysical and electrochemical properties of a copper porphyrin complex with a three-dimensional framework. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:133-138. [PMID: 32022707 DOI: 10.1107/s2053229619017273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/26/2019] [Indexed: 11/10/2022]
Abstract
Porphyrins and metalloporphyrins can generally show attractive structural motifs and interesting properties. A new copper porphyrin, namely poly[[μ-chlorido-[μ5-5,10,15,20-tetrakis(pyridin-4-yl)-21H,23H-porphine]tricopper(I)] [aquadichloridocopper(II)]], {[Cu3(C40H24N8)Cl][CuCl2(H2O)]}n (1), was synthesized by the self-assembly of copper chloride with 5,10,15,20-tetrakis(pyridin-4-yl)-21H,23H-porphine under solvothermal conditions. The structure of this copper porphyrin was characterized by single-crystal X-ray crystallography and elemental analysis. The porphyrin macrocycle shows a distorted saddle geometry, with the four pyrrole rings slightly distorted in an alternating mode either upwards or downwards. The copper ions show three-coordinated triangular and four-coordinated square-planar geometries. Every copper-porphyrin unit connects to 12 others via four μ4-bridging Cu2Cl moieties to complete the three-dimensional framework of compound 1, with isolated CuCl2(H2O) units located in the voids. This copper porphyrin displays a red photoluminescence. Electrochemical measurements showed that compound 1 has two redox waves (E1/2 = -160 and 91 mV).
Collapse
Affiliation(s)
- Wen Tong Chen
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji'an, Jiangxi 343009, People's Republic of China
| |
Collapse
|
13
|
Anjali K, Venkatesha NJ, Christopher J, Sakthivel A. Rhodium porphyrin molecule-based catalysts for the hydrogenation of biomass derived levulinic acid to biofuel additive γ-valerolactone. NEW J CHEM 2020. [DOI: 10.1039/d0nj01180k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RhTPP and RhTCPP were prepared and utilized for the conversion of levulinic acid to γ-valerolactone and the reaction mechanism was proposed.
Collapse
Affiliation(s)
- Kaiprathu Anjali
- Inorganic Materials & Heterogeneous Catalysis Laboratory
- Department of Chemistry
- School of Physical Sciences
- Central University of Kerala
- Kasaragod–671316
| | | | | | - Ayyamperumal Sakthivel
- Inorganic Materials & Heterogeneous Catalysis Laboratory
- Department of Chemistry
- School of Physical Sciences
- Central University of Kerala
- Kasaragod–671316
| |
Collapse
|
14
|
Anjali K, Aswini MS, Aswin P, Ganesh V, Sakthivel A. Iridium Tetra(4-carboxyphenyl) Porphyrin, Calix[4]pyrrole and Tetraphenyl Porphyrin Complexes as Potential Hydrogenation Catalysts. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kaiprathu Anjali
- Inorganic Materials & Heterogeneous Catalysis Laboratory; Department of Chemistry; School of Physical Sciences; Central University of Kerala; Kasaragod 671316 Kerala India
| | - Manammuzhangiyil Sivadasan Aswini
- Inorganic Materials & Heterogeneous Catalysis Laboratory; Department of Chemistry; School of Physical Sciences; Central University of Kerala; Kasaragod 671316 Kerala India
| | - Peringayi Aswin
- Inorganic Materials & Heterogeneous Catalysis Laboratory; Department of Chemistry; School of Physical Sciences; Central University of Kerala; Kasaragod 671316 Kerala India
| | - Venkatachalam Ganesh
- Electrodics & Electrocatalysis Division; CSIR-Central Electrochemical Research Institute (CSIR-CECRI); Karaikudi 630003 Tamil Nadu India
| | - Ayyamperumal Sakthivel
- Inorganic Materials & Heterogeneous Catalysis Laboratory; Department of Chemistry; School of Physical Sciences; Central University of Kerala; Kasaragod 671316 Kerala India
| |
Collapse
|
15
|
Anjali K, Christopher J, Sakthivel A. Ruthenium-Based Macromolecules as Potential Catalysts in Homogeneous and Heterogeneous Phases for the Utilization of Carbon Dioxide. ACS OMEGA 2019; 4:13454-13464. [PMID: 31460474 PMCID: PMC6705283 DOI: 10.1021/acsomega.9b01741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Ruthenium-containing tetraphenylporphyrin (Ru-TPP) molecule was prepared, and the structural elucidation was confirmed using 1H nuclear magnetic resonance (NMR), CHN, and mass spectral analyses. The incorporation of ruthenium ion into the cavities of the macromolecule was confirmed from the disappearance of the 1H NMR signal, characteristic of the N-H bond (-2.72 ppm in TPP). The CHN and mass spectral analyses of the ligand and metallomacromolecules are consistent with the theoretically calculated values. The homogeneous Ru-TPP macromolecule is grafted on the surface of aminosilane-, diaminosilane-, and iodosilane-functionalized SBA-15 molecular sieves. The successful grafting of Ru-TPP on functionalized mesoporous molecular sieve materials was evident from low-angle powder X-ray diffraction, 13C magic angle spinning NMR, and scanning electron microscopy-energy-dispersive X-ray analyses. The resultant homogeneous and heterogenized Ru-TPP catalysts were used for the utilization of carbon dioxide (CO2) under moderate reaction conditions. The homogeneous Ru-TPP catalyst showed first-order kinetics with respect to epoxide with the exclusive formation of cyclic carbonate (about 98%) and an activation energy of 16.07 kg/mol, which is much lower than some of the reported catalysts. Ru-TPP grafted on aminosilane- and iodosilane-functionalized materials showed better catalytic activity (above 90% conversion and 83-96% cyclic carbonate selectivity) and reusability for the chosen reaction.
Collapse
Affiliation(s)
- Kaiprathu Anjali
- Inorganic
Materials & Heterogeneous Catalysis Laboratory, Department of
Chemistry, School of Physical Sciences, Central University of Kerala Kasaragod, Sabarmati Building, Tejawini Hills, Kasaragod 671316, India
| | | | - Ayyamperumal Sakthivel
- Inorganic
Materials & Heterogeneous Catalysis Laboratory, Department of
Chemistry, School of Physical Sciences, Central University of Kerala Kasaragod, Sabarmati Building, Tejawini Hills, Kasaragod 671316, India
| |
Collapse
|
16
|
Rather IA, Wagay SA, Hasnain MS, Ali R. New dimensions in calix[4]pyrrole: the land of opportunity in supramolecular chemistry. RSC Adv 2019; 9:38309-38344. [PMID: 35540221 PMCID: PMC9076024 DOI: 10.1039/c9ra07399j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
The quest for receptors endowed with the selective complexation and detection of negatively charged species continues to receive substantial consideration within the scientific community worldwide. This study is encouraged by the utilization of anions in nature in a plethora of biological systems such as chloride channels and proteins and as polyanions for genetic information. The molecular recognition of anionic species is greatly interesting in terms of their favourable interactions. In this comprehensive review, in addition to giving accounts of some selected syntheses, we illustrated diverse applications ranging from molecular containers to ion transporters and drug carriers of a supramolecular receptor named calix[4]pyrrole. We believe that the present review may act as a catalyst in enhancing the novel applications of calix[4]pyrrole and its congeners in the other dimensions of science and technology. The quest for receptors endowed with the selective complexation and detection of negatively charged species continues to receive substantial consideration within the scientific community worldwide.![]()
Collapse
Affiliation(s)
| | | | | | - Rashid Ali
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi-110025
- India
| |
Collapse
|