1
|
Biswas M, Mobin SM, Dey S, Lahiri GK. Diverse Coordination Modes and Bidirectional Noninnocence of Pyridyl-β-diketonate on Ruthenium Platforms as a Function of Coligands. Inorg Chem 2024; 63:13664-13680. [PMID: 38968603 DOI: 10.1021/acs.inorgchem.4c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The article demonstrated diverse binding modes of deprotonated 1,3-di(2-pyridinyl)-1,3-propanedione (HL) (κ2-[O,O]-, κ2-[N,O]-, and μ-bis-κ2-[N,O]-) on selective ruthenium platforms: Ru(acac)2 (dimeric [1]ClO4), Ru(bpy)2 (monomeric [2]ClO4), Ru(pap)2 (isomeric monomeric [3]ClO4/[4]ClO4, dimeric [5](ClO4)3), and Ru(PPh3)2(CO) (monomeric 6, isomeric dimeric [7]ClO4/[8]ClO4) (acac = acetylacetonate, bpy = 2,2'-bipyridine, pap = 2-phenylazopyridine). Structural authentication of the complexes revealed (i) diverse binding mode of L- including its unprecedented bridging mode in [8]ClO4, (ii) varying degrees of nonplanarity of L-, and (iii) development of 1D polymeric chains or dimeric/tetrameric forms via intermolecular π-π interactions. The preferential binding feature of L- in the complexes could also be corroborated by their calculated relative energies. The analysis of the multiredox steps of the complexes suggested severe mixing of metal-ligand frontier orbitals, which in effect pinpointed the involvement of L- in both the oxidative and reductive processes along the redox chain, suggesting its bidirectional noninnocence under the present coordination situations. Though α-diketone or β-diketiminate was reported to activate O2 on the selective Ru(acac)2 platform, the inability of analogous β-diketonate-derived [1]ClO4 could be attributed to its calculated greater HOMO-LUMO energy gap, which disfavored electron exchange at the metal(RuIII)-ligand(L-) interface to introduce the required unpaired spin at the ligand backbone toward the 3O2 activation event.
Collapse
Affiliation(s)
- Mitrali Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shaikh M Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore-453552, India
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Arya Y, Ansari T, Bera SK, Panda S, Indra A, Lahiri GK. Superior electrocatalytic hydrogen evolution activity of a triply bridged diruthenium(II) complex on a carbon cloth support. Chem Commun (Camb) 2024; 60:6011-6014. [PMID: 38753000 DOI: 10.1039/d4cc01173b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This article describes the structural authentication of a unique triply bridged [1](ClO4)2 and monomeric [2]ClO4/[3]ClO4. Electrochemical HER on a carbon cloth support demonstrated the superior performance of [1](ClO4)2 with high TON (>105) and its long-term stability. The primary kinetic isotope effect of [1](ClO4)2 revealed the involvement of PCET in the rate-determining step.
Collapse
Affiliation(s)
- Yogita Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - Toufik Ansari
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi 221005, India.
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi 221005, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| |
Collapse
|
3
|
Biswas M, Dey S, Dhara S, Panda S, Lahiri GK. Metal-ligand synergy driven functionalisation of alkylene linked bis(aldimine) on a diruthenium(II) platform. Cyclisation versus oxygenation. Dalton Trans 2024; 53:2167-2180. [PMID: 38192265 DOI: 10.1039/d3dt03730d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This article addresses the impact of metal-ligand redox cooperativity on the functionalisation of coordinated ligands. It demonstrates the structure-reactivity correlation of bis(aldimine) derived bis-bidentate L (Py-CHN-(CH2)n-NCH-Py, with n = 2 (L1), 3 (L2), 4 (L3)) as a function of the conformation (syn/anti) of its alkylene linker as well as the overall structural form (cis/trans) of (acac)2RuII(μ-L)RuII(acac)2 complex moieties (1-5) possessing an electron-rich acetylacetonate (acac) co-ligand. A systematic variation of the bridging alkylene unit of L in RuII/RuII-derived 1-5 led to the following reactivity/redox events, which were validated through structural, spectroscopic, electrochemical and theoretical evaluations: (i) Cyclisation of the ethylene linked (syn conformation) bis-aldimine unit of L1 via C-C coupling yielded pyrazine bridged (acac)2RuII(μ-L1')RuII(acac)2, 1a, while the corresponding anti-form (ethylene linker) of the metal-bound L1 in 2 ((acac)2RuII(μ-L1)RuII(acac)2) led to oxygenation at the ligand backbone (bis-aldimine (L) → bis(carboxamido) (L'')) via O2 activation to generate RuIIIRuIII-derived (acac)2RuIII(μ-L1''2-)RuIII(acac)2 (2a). (ii) Consequently, propylene and butylene linked L2 and L3 bridged between two {Ru(acac)2} units in 3 and 4/5 underwent oxygenation of L to L'' to yield diruthenium(III) complexes 3a and 4a/5a, respectively. (iii) In contrast, analogous L bridged oxidised [(acac)2RuIII(μ-L)RuIII(acac)2](ClO4)2 ([2](ClO4)2-[5](ClO4)2) and [{(PPh3)2(CO)(H)RuII}2(μ-L)](ClO4)2 ([6](ClO4)2-[8](ClO4)2) involving electron poor co-ligands failed to undergo the oxygenation of L irrespective of its n value, reemphasising the effective role of redox interplay between RuII and L particularly in the presence of an electron-rich acac co-ligand in the functionalisation of the latter in 1a-5a.
Collapse
Affiliation(s)
- Mitrali Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
4
|
Seikh L, Dhara S, Singh AK, Singh A, Dey S, Indra A, Lahiri GK. The isomer-sensitive electrochemical HER of ruthenium(II)-hydrido complexes involving redox-active azoheteroaromatics. Dalton Trans 2024; 53:1746-1756. [PMID: 38168794 DOI: 10.1039/d3dt02925e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The article deals with the development of isomeric ruthenium(II)-hydrido complexes [RuII(H)(L1)(PPh3)2(CO)]ClO4 ([1a]ClO4-[1b]ClO4)/[RuII(H)(L2)(PPh3)2(CO)]ClO4 ([2a]ClO4-[2b]ClO4) involving azo coupled L1 [L1: (E)-1,2-bis(1-methyl-1H-pyrazol-3-yl)diazene]/L2 [L2: (E)-1,2-bis(4-iodo-1-methyl-1H-pyrazol-3-yl)diazene], respectively. Structural evaluation of the complexes affirmed the syn conformation of the coordinated/uncoordinated pyrazole groups of L and its unperturbed neutral azo (NN) state. Isomeric forms in [1a]ClO4/[1b]ClO4 or [2a]ClO4/[2b]ClO4 differed with respect to the cis and trans orientations of the coordinated CO and N(azo) donor of L, respectively. It also demonstrated the formation of intermolecular hydrogen-bonded dimeric or 1D-polymeric chains in [1a]ClO4/[2b]ClO4 or [1b]ClO4, respectively. Successive two-electron reductions of the complexes varied to an appreciable extent as a function of the heterocycles connected to L. The involvement of the azo function of L towards the reductions ([NN]0 → [NN]˙- → [NN]2-) was supported by the DFT calculated MOs and Mulliken spin density at the paramagnetic state, which was further validated by the radical EPR profile of the first reduced (S = 1/2) state. Isomeric [1a]ClO4/[1b]ClO4 or [2a]ClO4/[2b]ClO4 immobilised on the carbon cloth support underwent various electrochemical acidic HERs (hydrogen evolution reactions) with TOF/10-1 s-1: [1a]ClO4 (0.83) > [1b]ClO4 (0.68) > [2a]ClO4 (0.50) > [2b]ClO4 (0.37).
Collapse
Affiliation(s)
- Liton Seikh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Ajit Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Aditi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
5
|
Abhervé A, Mastropasqua Talamo M, Boi S, Poupard V, Gendron F, Guennic BL, Avarvari N, Pop F. Thiophene-Bipyridine Appended Diketopyrrolopyrrole Ligands and Platinum(II) Complexes. Inorg Chem 2021; 60:7351-7363. [PMID: 33913705 DOI: 10.1021/acs.inorgchem.1c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Straightforward palladium(II) catalyzed direct cross-coupling reaction between decyl, (S)-2-methyl-butyl, and dodecyl N-substituted diketopyrrolopyrrole thiophene (DPPT), including a 3-methoxy-thiophene derivative, and 6-bromo-2,2'-bipyridine afforded a series of mono- and bis-bipyridine substituted DPPT ligands 1-3. Complexation reactions with PtCl2(DMSO)2 provided ortho-metalated platinum(II) complexes 1-Pt and 2-Pt, together with the N^N^O complex 3d-Pt(N^N^O) resulted from the O-Me activation of the intermediary complex 3d-Pt(N^N). The ligand 1b and the mononuclear complexes 1a-Pt and 1b-Pt have been structurally characterized by single crystal X-ray structure, evidencing the establishment of numerous intermolecular π-π interactions in the solid state. Moreover, in the crystal structure of the model complex DMTB-Pt(N^N^O) (DMTB = 3,4-dimethoxy-(2,2'-bipyridine)) the chelating tridentate N^N^O mode is clearly evidenced. The chiral ligand 1b and its mononuclear complex 1b-Pt do not show any CD signal in solution, but they are CD active in the solid state with bisignate bands in the low energy region, opposite in sign between the ligand and the complex, suggesting helical supramolecular arrangement of the dpp chromophore in the solid state. Photophysical investigations demonstrate that all of the ligands are fluorescent with high quantum yields, while the emission is quenched for the complexes, except partially in 3d-Pt(N^N), very likely through an intersystem crossing mechanism promoted by the heavy metal. Density functional theory calculations support the differences observed between the absorption properties of the ligands, ortho- and non-ortho-metalated complexes. The highly fluorescent bipyridine ligands reported herein open the way toward multifunctional transition metal complexes and their use in organic electronics.
Collapse
Affiliation(s)
- Alexandre Abhervé
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | | | - Sara Boi
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Vincent Poupard
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Frédéric Gendron
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Narcis Avarvari
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Flavia Pop
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| |
Collapse
|
6
|
Dey S, Panda S, Lahiri GK. Ruthenium-Hydride Assisted Remarkable Diversity Towards Non-Spectator Feature of Benzodifuroxan. Chem Asian J 2020; 15:3281-3295. [PMID: 32779852 DOI: 10.1002/asia.202000849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Indexed: 11/07/2022]
Abstract
The present article demonstrates that ruthenium-hydride [RuII (H)(Cl)(CO)(PPh3 )3 ] mediated diverse functionalization modes of benzodifuroxan (BDF) encompassing two furoxan rings. Hydride transfer from the metal precursor facilitated multiple cascade reactions involving unsymmetrical cleavage of the furoxan rings of BDF, leading to the one-pot formation of a series of ruthenium (II) coordinated functionalized ligands exhibiting bidentate κ2 -N,O, κ2 -N,N' and bis-bidentate μ-bis(κ2 -N,O) modes. Further, a moderately stable intermediate species was also encountered in the reaction sequence in which the transformed deoxygenated ligand coordinated to the metal ion via the rarely manifested furazan ring (κ2 -N,N'' mode). The products were authenticated by their single-crystal X-ray structures and other spectroscopic/analytical techniques. Redox non-innocence of the functionalized ligands in the complexes was illustrated by spectroelectrochemistry (cyclic voltammmetry, UV-Vis. and EPR) in conjunction with DFT/TD-DFT calculations. Mechanistic outline for the facile ring opening processes of BDF including interconversions of complexes (e. g. reductive ring opening) were also addressed.
Collapse
Affiliation(s)
- Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
7
|
Bera SK, Mondal S, Hazari AS, Priego JL, Jiménez‐Aparicio R, Kaim W, Lahiri GK. Three Bis‐BODIPY Analogous Diruthenium Redox Series: Characterization and Electronic Structure Analysis. Chem Asian J 2020; 15:2532-2543. [DOI: 10.1002/asia.202000326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sudip Kumar Bera
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sudipta Mondal
- Institut für Anorganische ChemieUniversität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Arijit Singha Hazari
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - José Luis Priego
- Departamento de Química Inorgánica Facultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria E-28040 Madrid Spain
| | - Reyes Jiménez‐Aparicio
- Departamento de Química Inorgánica Facultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria E-28040 Madrid Spain
| | - Wolfgang Kaim
- Institut für Anorganische ChemieUniversität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Goutam Kumar Lahiri
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
8
|
Kaim W, Lahiri GK. The coordination potential of indigo, anthraquinone and related redox-active dyes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Dhara S, Ansari MA, Lahiri GK. Host–Guest Feature of DPPP Bridged Arene–Ruthenium Clip Derived Molecular Rectangle. Inorg Chem 2019; 58:10991-10999. [DOI: 10.1021/acs.inorgchem.9b01468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Mohd. Asif Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|