1
|
Takebayashi S, Ariai J, Gellrich U, Kartashov SV, Fayzullin RR, Kang HB, Yamane T, Sugisaki K, Sato K. Synthesis and characterization of a formal 21-electron cobaltocene derivative. Nat Commun 2023; 14:4979. [PMID: 37669936 PMCID: PMC10480225 DOI: 10.1038/s41467-023-40557-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
Metallocenes are highly versatile organometallic compounds. The versatility of the metallocenes stems from their ability to stabilize a wide range of formal electron counts. To date, d-block metallocenes with an electron count of up to 20 have been synthesized and utilized in catalysis, sensing, and other fields. However, d-block metallocenes with more than formal 20-electron counts have remained elusive. The synthesis and isolation of such complexes are challenging because the metal-carbon bonds in d-block metallocenes become weaker with increasing deviation from the stable 18-electron configuration. Here, we report the synthesis, isolation, and characterization of a 21-electron cobaltocene derivative. This discovery is based on the ligand design that allows the coordination of an electron pair donor to a 19-electron cobaltocene derivative while maintaining the cobalt-carbon bonds, a previously unexplored synthetic approach. Furthermore, we elucidate the origin of the stability, redox chemistry, and spin state of the 21-electron complex. This study reveals a synthetic method, structure, chemical bonding, and properties of the 21-electron metallocene derivative that expands our conceptual understanding of d-block metallocene chemistry. We expect that this report will open up previously unexplored synthetic possibilities in d-block transition metal chemistry, including the fields of catalysis and materials chemistry.
Collapse
Affiliation(s)
- Satoshi Takebayashi
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Jama Ariai
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen, D-35392, Germany
| | - Urs Gellrich
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen, D-35392, Germany.
| | - Sergey V Kartashov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russian Federation
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russian Federation.
| | - Hyung-Been Kang
- Engineering Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Takeshi Yamane
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kenji Sugisaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Graduate School of Science and Technology, Keio University, 7-1 Shinkawasaki, Saiwai-ku, Kawasaki, Kanagawa, 212-0032, Japan
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
2
|
Dais TN, Takano R, Ishida T, Plieger PG. Lanthanide induced variability in localised Co II geometries of four triangular L 3Co 3 IILn III complexes. RSC Adv 2022; 12:4828-4835. [PMID: 35425468 PMCID: PMC8981366 DOI: 10.1039/d1ra08797e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Four tetranuclear heterobimetallic triangle complexes [L3Co3Dy(NO3)2(H2O)(MeOH)5](NO3) (C1), [L3Co3Gd(NO3)3(MeOH)4] (C2), [L3Co3La(NO3)2(H2O)6](NO3)(H2O) (C3), and [L3Co3TbCl(NO3)2(H2O)0.5(MeOH)3.5] (C4), where H2L = 1,4-bisformylnaphthalene-2,3-diol, have been synthesised and structurally characterised. Each complex crystallises with a complete molecule in the asymmetric unit (Z' = 1) and displays near perfect octahedrality in two out of three CoII centres. The third CoII ion assumes a different coordination geometry in each complex: six-coordinate octahedral in C1, six-coordinate with a distortion towards trigonal prismatic in C2, five-coordinate trigonal bipyramidal in C3, and five-coordinate square pyramidal in C4; which has been attributed to increasing lanthanide cation size, coupled with a non-macrocyclic coordination environment. Continuous Shape Measurement (CShM) calculations and octahedral distortion parameter calculations were performed, using the SHAPE and OctaDist software packages, respectively, in order to aid in the assessment of each metal centre's local coordination geometry. The preliminary magnetic investigation of C3 found χ m T = 9.4 cm3 K mol-1 at 300 K and M = 7.1 μ B at 1.8 K, which are approximately two thirds the maximum theoretical values for three CoII ions and indicates the presence of a relatively large zero-field splitting parameter (D/k B = 65 K) operative in each CoII ion rather than exchange coupling between the CoII centres.
Collapse
Affiliation(s)
- Tyson N Dais
- School of Natural Sciences, Massey University Private Bag 11 222 Palmerston North New Zealand
| | - Rina Takano
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communication 1-5-1 Chofugaoka, Chofu Tokyo 182-8585 Japan
| | - Takayuki Ishida
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communication 1-5-1 Chofugaoka, Chofu Tokyo 182-8585 Japan
| | - Paul G Plieger
- School of Natural Sciences, Massey University Private Bag 11 222 Palmerston North New Zealand
| |
Collapse
|
4
|
Misochko EY, Akimov AV, Korchagin DV, Nehrkorn J, Ozerov M, Palii AV, Clemente-Juan JM, Aldoshin SM. Purely Spectroscopic Determination of the Spin Hamiltonian Parameters in High-Spin Six-Coordinated Cobalt(II) Complexes with Large Zero-Field Splitting. Inorg Chem 2019; 58:16434-16444. [DOI: 10.1021/acs.inorgchem.9b02195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Joscha Nehrkorn
- National High Magnetic Field Laboratory & Florida State University, Tallahassee, Florida, United States
- Max Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, Germany
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory & Florida State University, Tallahassee, Florida, United States
| | - Andrew V. Palii
- Institute of Problems of Chemical Physics of RAS, Chernogolovka, Russia
- Institute of Applied Physics, Chisinau, Moldova
| | | | | |
Collapse
|
5
|
Uchida K, Cosquer G, Sugisaki K, Matsuoka H, Sato K, Breedlove BK, Yamashita M. Isostructural M(ii) complexes (M = Mn, Fe, Co) with field-induced slow magnetic relaxation for Mn and Co complexes. Dalton Trans 2019; 48:12023-12030. [PMID: 31298228 DOI: 10.1039/c8dt02150c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We herein report the synthetic, structural, theoretical, and magnetic studies on three isostructural complexes, [M(L)2(CH3OH)2] (M = Mn (Mn), Fe (Fe), and Co (Co); HL = 2,6-bis(pyrazole-1-yl)pyridine-4-carboxylic acid). From single crystal X-ray crystallography, it is found that the complexes crystallized in the same space group (C2/c) and had seven-coordinate pentagonal bipyramidal structures. From direct current (dc) and alternating current (ac) magnetic susceptibility measurements, Mn and Co were found to undergo field-induced slow magnetic relaxation with two relaxation pathways. To elucidate the origin of the slow magnetic relaxation phenomena of Mn, electron paramagnetic resonance (EPR) measurements and theoretical calculations were performed. The EPR measurements were performed on polycrystalline powder samples, and the following parameters were obtained by simulating the EPR data: giso = 2.00 and small zero field splitting parameter D = -0.13 cm-1. To the best of our knowledge, this is the first example of a seven-coordinate mononuclear Mn(ii) complex undergoing slow magnetic relaxation.
Collapse
Affiliation(s)
- Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan.
| | | | | | | | | | | | | |
Collapse
|