1
|
Zhao Y, Zhang Y, Wang T, Pei R, Zhao Y, Xue XS, Wang X. A Thermally Populated Germylene-Based Donor-Acceptor Diradical. Angew Chem Int Ed Engl 2024:e202411180. [PMID: 39192703 DOI: 10.1002/anie.202411180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
This work reports synthesis of a germylene based donor-acceptor molecule and its thermal excitation to a triplet state by coordination with a Lewis acid. Products have been characterized by single crystal X-ray diffraction, EPR spectroscopy, and SQUID measurement, in conjunction with DFT calculation. The singlet-triplet energy gap of the donor-acceptor molecule is dramatically reduced from -18.8 to -7.2 kcal/mol by the coordination with B(C6F5)3 (BCF), which enables an intramolecular single electron transfer from one germylene moiety to another upon heating, forming an intramolecular radical ion pair with diradical character. The work provides an approach to the formation of thermally populated open-shell species of heavier main group elements.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuchen Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Runbo Pei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao-Song Xue
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Kong S, Yang L, Sun Q, Wang T, Pei R, Zhao Y, Wang W, Zhao Y, Cui H, Gu X, Wang X. Metal-Free Catalytic Formation of a Donor-Acceptor-Donor Molecule and Its Lewis Acid-Adduct Singlet Diradical with High-Efficient NIR-II Photothermal Conversion. Angew Chem Int Ed Engl 2024; 63:e202400913. [PMID: 38441914 DOI: 10.1002/anie.202400913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 04/05/2024]
Abstract
We have synthesized a quinone-incorporated bistriarylamine donor-acceptor-donor (D-A-D) semiconductor 1 by B(C6F5)3 (BCF) catalyzed C-H/C-H cross coupling via radical ion pair intermediates. Coordination of Lewis acids BCF and Al(ORF)3 (RF=C(CF3)3) to the semiconductor 1 afforded diradical zwitterions 2 and 3 by integer electron transfer. Upon binding to Lewis acids, the LUMO energy of 1 is significantly lowered and the band gap of the semiconductor is significantly narrowed from 1.93 eV (1) to 1.01 eV (2) and 1.06 eV (3). 2 and 3 are rare near-infrared (NIR) diradical dyes with broad absorption both centered around 1500 nm. By introducing a photo BCF generator, 2 can be generated by light-dependent control. Furthermore, the integer electron transfer process can also be reversibly regulated via the addition of CH3CN. In addition, the temperature of 2 sharply increased and reached as high as 110 °C in 10 s upon the irradiation of near-infrared-II (NIR-II) laser (1064 nm, 0.7 W cm-2), exhibiting a fast response to laser. It displays excellent photothermal stability with a photothermal (PT) conversion efficiency of 62.26 % and high-quality PT imaging.
Collapse
Affiliation(s)
- Shanshan Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Liming Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Runbo Pei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Wenqing Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Moleculer-Based Materials, Anhui Normal University, Wuhu, 241002, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Haiyan Cui
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032, China
| |
Collapse
|
3
|
McNicholas BJ, Nie C, Jose A, Oyala PH, Takase MK, Henling LM, Barth AT, Amaolo A, Hadt RG, Solomon EI, Winkler JR, Gray HB, Despagnet-Ayoub E. Boronated Cyanometallates. Inorg Chem 2023; 62:2959-2981. [PMID: 36534001 DOI: 10.1021/acs.inorgchem.2c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thirteen boronated cyanometallates [M(CN-BR3)6]3/4/5- [M = Cr, Mn, Fe, Ru, Os; BR3 = BPh3, B(2,4,6,-F3C6H2)3, B(C6F5)3] and one metalloboratonitrile [Cr(NC-BPh3)6]3- have been characterized by X-ray crystallography and spectroscopy [UV-vis-near-IR, NMR, IR, spectroelectrochemistry, and magnetic circular dichroism (MCD)]; CASSCF+NEVPT2 methods were employed in calculations of electronic structures. For (t2g)5 electronic configurations, the lowest-energy ligand-to-metal charge-transfer (LMCT) absorptions and MCD C-terms in the spectra of boronated species have been assigned to transitions from cyanide π + B-C borane σ orbitals. CASSCF+NEVPT2 calculations including t1u and t2u orbitals reproduced t1u/t2u → t2g excitation energies. Many [M(CN-BR3)6]3/4- complexes exhibited highly electrochemically reversible redox couples. Notably, the reduction formal potentials of all five [M(CN-B(C6F5)3)6]3- anions scale with the LMCT energies, and Mn(I) and Cr(II) compounds, [K(18-crown-6)]5[Mn(CN-B(C6F5)3)6] and [K(18-crown-6)]4[Cr(CN-B(C6F5)3)6], are surprisingly stable. Continuous-wave and pulsed electron paramagnetic resonance (EPR; hyperfine sublevel correlation) spectra were collected for all Cr(III) complexes; as expected, 14N hyperfine splittings are greater for (Ph4As)3[Cr(NC-BPh3)6] than for (Ph4As)3[Cr(CN-BPh3)6].
Collapse
Affiliation(s)
- Brendon J McNicholas
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Cherish Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California94305, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Michael K Takase
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Larry M Henling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Alexandra T Barth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Alessio Amaolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California94305, United States
| | - Jay R Winkler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Harry B Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California91125, United States
| | - Emmanuelle Despagnet-Ayoub
- Department of Chemistry, Occidental College, 1600 Campus Road, Los Angeles, California90041, United States
| |
Collapse
|
4
|
Imagawa T, Nakamoto M, Shang R, Adachi Y, Ohshita J, Tsunoji N, Yamamoto Y. Complexation of B(C6F5)3 and 9,10-Dicyanoanthracene: Dual Role of Borane as Spatial and Electronic Tuner. CHEM LETT 2020. [DOI: 10.1246/cl.200339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Taiki Imagawa
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masaaki Nakamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Rong Shang
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yohei Adachi
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Joji Ohshita
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Nao Tsunoji
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
Tsuchiya Y, Yamaguchi K, Miwa Y, Kutsumizu S, Minoura M, Murai T. N,N-Diarylthiazol-5-amines: Structure-Specific Mechanofluorochromism and White Light Emission in the Solid State. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuki Tsuchiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Kirara Yamaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Yohei Miwa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Mao Minoura
- Department of Chemistry, Graduate School of Science, Rikkyo University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
6
|
Ramler J, Hofmann K, Lichtenberg C. Neutral and Cationic Bismuth Compounds: Structure, Heteroaromaticity, and Lewis Acidity of Bismepines. Inorg Chem 2019; 59:3367-3376. [DOI: 10.1021/acs.inorgchem.9b03189] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacqueline Ramler
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Klaus Hofmann
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Crispin Lichtenberg
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Hatanaka S, Ono T, Yano Y, Gryko DT, Hisaeda Y. Tris(pentafluorophenyl)borane‐pyrrolo[3,2‐
b
]pyrrole Hybrids: Solid‐State Structure and Crystallization‐Induced Enhanced Emission. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sou Hatanaka
- Department of Chemistry and Biochemistry Graduate School of EngineeringKyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry Graduate School of EngineeringKyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS)Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshio Yano
- Department of Chemistry and Biochemistry Graduate School of EngineeringKyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry Graduate School of EngineeringKyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS)Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
8
|
|
9
|
|