1
|
Gu M, Rao AM, Zhou J, Lu B. Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem Sci 2024; 15:2323-2350. [PMID: 38362439 PMCID: PMC10866370 DOI: 10.1039/d3sc05768b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
In the past few decades, great efforts have been made to develop advanced transition metal dichalcogenide (TMD) materials as metal-ion battery electrodes. However, due to existing conversion reactions, they still suffer from structural aggregation and restacking, unsatisfactory cycling reversibility, and limited ion storage dynamics during electrochemical cycling. To address these issues, extensive research has focused on molecular modulation strategies to optimize the physical and chemical properties of TMDs, including phase engineering, defect engineering, interlayer spacing expansion, heteroatom doping, alloy engineering, and bond modulation. A timely summary of these strategies can help deepen the understanding of their basic mechanisms and serve as a reference for future research. This review provides a comprehensive summary of recent advances in molecular modulation strategies for TMDs. A series of challenges and opportunities in the research field are also outlined. The basic mechanisms of different modulation strategies and their specific influences on the electrochemical performance of TMDs are highlighted.
Collapse
Affiliation(s)
- Mingyuan Gu
- School of Physics and Electronics, Hunan University Changsha P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University Clemson SC 29634 USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University Changsha P. R. China
| |
Collapse
|
2
|
Salvatore KL, Fang J, Tang CR, Takeuchi ES, Marschilok AC, Takeuchi KJ, Wong SS. Microwave-Assisted Fabrication of High Energy Density Binary Metal Sulfides for Enhanced Performance in Battery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101599. [PMID: 37242017 DOI: 10.3390/nano13101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Nanomaterials have found use in a number of relevant energy applications. In particular, nanoscale motifs of binary metal sulfides can function as conversion materials, similar to that of analogous metal oxides, nitrides, or phosphides, and are characterized by their high theoretical capacity and correspondingly low cost. This review focuses on structure-composition-property relationships of specific relevance to battery applications, emanating from systematic attempts to either (1) vary and alter the dimension of nanoscale architectures or (2) introduce conductive carbon-based entities, such as carbon nanotubes and graphene-derived species. In this study, we will primarily concern ourselves with probing metal sulfide nanostructures generated by a microwave-mediated synthetic approach, which we have explored extensively in recent years. This particular fabrication protocol represents a relatively facile, flexible, and effective means with which to simultaneously control both chemical composition and physical morphology within these systems to tailor them for energy storage applications.
Collapse
Affiliation(s)
- Kenna L Salvatore
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Justin Fang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Christopher R Tang
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Esther S Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Amy C Marschilok
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Kenneth J Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
3
|
Wei Z, Zhuiykov S. Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides. NANOSCALE 2019; 11:15709-15738. [PMID: 31414098 DOI: 10.1039/c9nr03072g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Atomically thin two-dimensional (2D) semiconductors are the thinnest functional semiconducting materials available today. Among them, both molybdenum trioxide and chalcogenides (MT&Ds) represent key components within the family of different 2D semiconductors for various electronic, optoelectronic and electrochemical applications due to their unique electronic, optical, mechanical and electrochemical properties. However, despite great progress in research dedicated to the development and fabrication of 2D MT&Ds observed within the last decade, there are significant challenges that affected their charge transport behavior and fabrication on a large scale as well as there is high dependence of the carrier mobility on the thickness. In this article, we review the recent progress in the carrier mobility engineering of 2D MT&Ds and elaborate devised strategies dedicated to the optimization of MT&D properties. Specifically, the latest physical and chemical methods towards the surface functionalization and optimization of the major factors influencing the extrinsic transport at the electrode-2D semiconductor interface are discussed.
Collapse
Affiliation(s)
- Zihan Wei
- Ghent University Global Campus, Department of Green Chemistry & Technology, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, South Korea.
| | | |
Collapse
|