1
|
Agustiningsih D, Kunarti ES, Nuryono N, Santosa SJ, Darussalam Mardjan MI, Kamiya Y, Otomo R. Novel nickel-immobilized-SiO 2-TiO 2 fine particles in the presence of cetyltrimethylammonium bromide as a catalyst for ultrasound-assisted-Kumada cross-coupling reaction. Heliyon 2024; 10:e34614. [PMID: 39130425 PMCID: PMC11315103 DOI: 10.1016/j.heliyon.2024.e34614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/19/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Kumada cross-coupling reaction is useful for producing biphenyls, where nickel and copper have been widely investigated as catalysts but mainly homogeneous ones. In this study, we investigated ultrasound-assisted-Kumada cross-coupling reaction over the heterogeneous catalysts in which Ni2+, Cu2+, or both was immobilized on aminopropylsilane-functionalized-SiO2-TiO2 prepared in the presence of cetyltrimethylammonium bromide (CTAB). The presence of CTAB effectively prevented the particle growth and therefore SiO2-TiO2 fine particles with high surface area (502 m2 g-1) were formed. The Ni2+-immobilized catalyst showed high catalytic activity for the ultrasound-assisted-Kumada cross-coupling reaction of a wide variety of substrates and was reusable three times. Performing the reaction under ultrasound irradiation was very effective in significantly accelerating the reaction rate compared with the conventional mechanical method. In contrast to Ni2+, Cu2+ was deposited on the support as crystalline Cu(OH)2 and the resulting catalysts with Cu2+ and Ni2+-Cu2+ were less active and less stable under the reaction conditions.
Collapse
Affiliation(s)
- Dewi Agustiningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
- Graduate School of Environmental Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| | - Eko Sri Kunarti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Nuryono Nuryono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Sri Juari Santosa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Muhammad Idham Darussalam Mardjan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Yuichi Kamiya
- Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| | - Ryoichi Otomo
- Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| |
Collapse
|
2
|
Das A, Sangavi R, Gowrishankar S, Kumar R, Sankaralingam M. Deciphering the Mechanism of MRSA Targeting Copper(II) Complexes of NN2 Pincer-Type Ligands. Inorg Chem 2023; 62:18926-18939. [PMID: 37930252 DOI: 10.1021/acs.inorgchem.3c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
WHO lists AMR as one of the top ten global public health issues. Therefore, constant effort is needed to develop more efficient antimicrobial drugs. As a result, earth-abundant transition-metal complexes have emerged as an excellent solution. In this regard, new aminoquinoline-based copper(II) pincer complexes 1-3 were designed, synthesized, and characterized by modern spectroscopic techniques. It is worth mentioning that, at the highest concentration (1024 μg/mL) of complexes (1-3), the hemolysis was found to be <15%, implying their less toxicity. Further, the complexes effectively interfered with the growth of Gram positive MRSA and the fungus Candida albicans. Among them, complex 2 was promising (MIC = 16 μg/mL) against MRSA, which was better than the known antibacterial drug kanamycin (64 μg/mL) under identical conditions. The Alamar blue cell viability test and the MBC/MFC identified by spot assay were in accordance with MIC values. Moreover, the insilico studies explained the most probable mechanism of action as inhibition of cell wall biosynthesis and dysfunction of antibiotic sensing proteins. Similarly, the antifungal action might be due to the cell surface adhesion protein dysfunction by the complexes. Furthermore, we are expecting to draw these compounds for clinical applications.
Collapse
Affiliation(s)
- Athulya Das
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India
| | | | - Rajesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| |
Collapse
|
3
|
Skavenborg ML, Møller MS, Mossin S, Waite TD, McKenzie CJ. Sulfonamido-Pincer Complexes of Cu(II) and the Electrocatalysis of O 2 Reduction. Inorg Chem 2023; 62:12741-12749. [PMID: 37535840 DOI: 10.1021/acs.inorgchem.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Heteroleptic copper complexes of an asymmetrical pincer ligand containing a central anionic sulfonamide donor (pyridine-2-yl-sulfonyl)(quinolin-8-yl)-amide (psq), which contains a central anionic sulfonamido donor have been prepared. Meridional κ3-N,N″,N‴ binding with the co-ligands acetate, chloride, or acetonitrile (MeCN), trans to the central sulfonamido N-donor, is revealed by the X-ray crystal structures of [Cu(OAc)(psq)(H2O)], [CuCl(psq)]2, and [Cu(psq)(MeCN)](PF6). Either overall distorted square pyramidal or octahedral geometries of the copper atom are satisfied by coordinated water in the case of the acetate complex or interactions with periphery sulfonamido oxygen atoms on adjacent molecules in the dimeric chloride and 1D polymeric acetonitrile complexes. The cyclic voltammogram (CV) of [Cu(OAc)(psq)(H2O)] shows a quasi-reversible CuII/CuI reduction at -0.930 V (vs Fc+/Fc0, MeCN), and an irreversible CuII/CuI reduction for [Cu(psq)(MeCN)](PF6) is seen at -0.838 V. This signal is split into two quasi-reversible redox processes on the addition of 2,2,2-trifluoroethanol (TFE). This suggests that TFE pushes a solution equilibrium toward a dimeric acetate complex analogous to [CuCl(psq)]2, which shows two quasi-reversible waves at -0.666 V and -0.904 V vs Fc+/Fc0 consistent with its dimeric solid-state structure. A comparison of the CVs of [Cu(OAc)(psq)(H2O)] under either a N2 or an O2 atmosphere revealed that this complex catalyzes turnover electro-reduction of O2 to H2O2 and H2O. The rate of reaction increases on addition of a weak organic acid, and a coulombic efficiency of 48% for H2O2 was determined by iodometric titration. We propose that a CuI complex formed on electroreduction binds O2 to yield an intermediate superoxide complex. On electron and proton transfer to this species, a bifurcated route back to the O2-activating CuI complex is feasible with either release of H2O2 or O-O cleavage resulting in the liberation of H2O. The CuI complex is regenerated by subsequent reduction and protonation to close the cycle.
Collapse
Affiliation(s)
- Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mads Sondrup Møller
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Susanne Mossin
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Bouchey C, Shopov DY, Gruen AD, Tolman WB. Mimicking the Cu Active Site of Lytic Polysaccharide Monooxygenase Using Monoanionic Tridentate N-Donor Ligands. ACS OMEGA 2022; 7:35217-35232. [PMID: 36211076 PMCID: PMC9535706 DOI: 10.1021/acsomega.2c04432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
In an effort to prepare small molecule mimics of the active site of lytic polysaccharide monooxygenase (LPMO), three monoanionic tridentate N donor ligands comprising a central deprotonated amide group flanked by two neutral donors were prepared, and their coordination chemistry with Cu(I) and Cu(II) was evaluated. With Cu(I), a dimer formed, which was characterized by X-ray crystallography and NMR spectroscopy. A variety of mononuclear and dinuclear Cu(II) species with a range of auxiliary ligands (MeCN, Cl-, OH-, OAc-, OBz-, CO3 2-) were prepared and characterized by X-ray diffraction and various spectroscopies (UV-vis, EPR). The complexes exhibit structural similarities to the LPMO active site.
Collapse
Affiliation(s)
- Caitlin
J. Bouchey
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Dimitar Y. Shopov
- Department
of Chemistry, Washington University in St.
Louis, One Brookings Drive, Campus Box 1134, St.
Louis, Missouri 63130, United States
| | - Aaron D. Gruen
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department
of Chemistry, Washington University in St.
Louis, One Brookings Drive, Campus Box 1134, St.
Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Petruncio G, Elahi-Mohassel S, Girgis M, Paige M. Copper-catalyzed sp3-sp3 cross-coupling of turbo grignards with benzyl halides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yang B, Wang ZX. Nickel-Catalyzed Alkylation or Reduction of Allylic Alcohols with Alkyl Grignard Reagents. J Org Chem 2020; 85:4772-4784. [DOI: 10.1021/acs.joc.0c00008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Saravana Kumar S, Selva Kumar R, Ashok Kumar S. An “Off-On-Off” type fluorescent chemosensor for the relay detection of Zn2+ and H2PO4− in aqueous environment. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Zhu D, Lv L, Qiu Z, Li CJ. Nickel-Catalyzed Cross-Coupling of Umpolung Carbonyls and Alkyl Halides. J Org Chem 2019; 84:6312-6322. [DOI: 10.1021/acs.joc.9b00649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dianhu Zhu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Leiyang Lv
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|