1
|
Boggiano A, Bernbeck MG, Jiang N, La Pierre HS. Coordination Modes and Binding Patterns in Lanthanum Phosphoramide Complexes. Inorg Chem 2024; 63:9638-9647. [PMID: 38446786 PMCID: PMC11134493 DOI: 10.1021/acs.inorgchem.3c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
A monoanionic phosphoramide ligand is introduced, which forms a series of lanthanum complexes with the ligand in both anionic and neutral forms. Stoichiometric control alone provides monometallic complexes with either two or three phosphoramide ligands. Alternatively, a combination of anionic and neutral proteo ligands featuring intramolecular hydrogen bonding can be obtained. The anionic form of the ligand binds lanthanum as a bi- or monodentate ligand, depending on the steric demand at the metal center, while the protonated ligand binds exclusively through the phosphoramide oxygen donor.
Collapse
Affiliation(s)
- Andrew
C. Boggiano
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Maximilian G. Bernbeck
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Ningxin Jiang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Henry S. La Pierre
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Nuclear
and Radiological Engineering and Medical Physics Program, School of
Mechanical Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
2
|
Mukthar NFM, Schley ND, Ung G. Strong Circularly Polarized Luminescence at 1550 nm from Enantiopure Molecular Erbium Complexes. J Am Chem Soc 2022; 144:6148-6153. [PMID: 35377146 DOI: 10.1021/jacs.2c01134] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Circularly polarized luminescence (CPL) in two subregions of the near-infrared (NIR) has been achieved. By leveraging the rigidity and diminishing detrimental vibrations of the heterobimetallic binolate complexes of erbium [(Binol)3ErNa3], species exhibiting an exceptionally high dissymmetry factor (|glum |) of 0.47 at 1550 nm were obtained. These erbium complexes are the first reported examples of CPL observed beyond 1200 nm. Analogous complexes of ytterbium and neodymium also exhibited strong CPL (|glum| = 0.17, 0.05, respectively) in a higher energy NIR window (800-1200 nm). All complexes exhibit high quantum yields (Er: 0.58%, Yb: 17%, Nd: 9.3%) and high BCPL values (Er: 57 M-1 cm-1, Yb: 379 M-1 cm-1, Nd: 29 M-1 cm-1). Because of their strong CPL emission in the telecom band (1550 nm), biologically relevant NIR emission window (800-1100 nm), and synthetic versatility, the complexes reported here could permit further promising developments in quantum communication technologies and biologically relevant sensors.
Collapse
Affiliation(s)
- Nishya F M Mukthar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Mouhtady O, Castellan T, André‐Barrès C, Gornitzka H, Fabing I, Saffon‐Merceron N, Génisson Y, Gaspard H. (
R
)‐BINOL‐6,6’‐bistriflone: Shortened Synthesis, Characterization, and Enantioselective Catalytic Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Omar Mouhtady
- College of Engineering and Technology American University of the Middle East Kuwait
| | - Tessa Castellan
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique SPCMIB UMR 5068 CNRS/Université Paul Sabatier - Toulouse III 118 route de Narbonne Toulouse 31062 Cedex 9 France
| | - Christiane André‐Barrès
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique SPCMIB UMR 5068 CNRS/Université Paul Sabatier - Toulouse III 118 route de Narbonne Toulouse 31062 Cedex 9 France
| | - Heinz Gornitzka
- LCC-CNRS Université de Toulouse CNRS UPS Toulouse 31077 France
| | - Isabelle Fabing
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique SPCMIB UMR 5068 CNRS/Université Paul Sabatier - Toulouse III 118 route de Narbonne Toulouse 31062 Cedex 9 France
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse ICT FR 2599 CNRS/Université Paul Sabatier - Toulouse III Toulouse 31062 Cedex 9 France
| | - Yves Génisson
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique SPCMIB UMR 5068 CNRS/Université Paul Sabatier - Toulouse III 118 route de Narbonne Toulouse 31062 Cedex 9 France
| | - Hafida Gaspard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique SPCMIB UMR 5068 CNRS/Université Paul Sabatier - Toulouse III 118 route de Narbonne Toulouse 31062 Cedex 9 France
- Laboratoire Hétérochimie Fondamentale et Appliquée LHFA UMR 5069 CNRS/Université Paul Sabatier - Toulouse III 118 route de Narbonne Toulouse 31062 Cedex 9 France
| |
Collapse
|
4
|
Tarlton ML, Vilanova SP, Kaumini MG, Kelley SP, Huang P, Walensky JR. Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorg Chem 2021; 60:14932-14943. [PMID: 34528785 DOI: 10.1021/acs.inorgchem.1c02308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
To synthesize complexes with thorium-phosphorus multiple-bond character, reactions of (C5Me5)2Th[P(H)Mes]2 with monovalent alkali-metal bases, MN(SiMe3)2, as well as CuMes, have been investigated. The results with MN(SiMe3)2 are phosphinidiide complexes of the form {(C5Me5)2Th[μ2-P(Mes)][μ2-P(H)Mes]M(L)n}2 (M = Na, n = 0; M = K, L = THF, n = 1; M = Rb, L = THF, n = 1; M = Cs, L = Et2O, n = 1). With CuMes, the product is a Th2Cu3P5 heterometallic structure, {(C5Me5)2Th[(μ2-P(H)Mes)P(Mes)]Cu}2Cu[μ2-P(H)Mes]. All complexes have been characterized using heteronuclear NMR and IR spectroscopy, density functional theory calculations, and their solid-state structure identified by X-ray crystallography. We also report the structure of {(C5Me5)2Th[(μ2-As(H)Mes)As(Mes)]Cu}2Cu[μ2-As(H)Mes] obtained from (C5Me5)2Th[As(H)Mes]2 with CuMes.
Collapse
Affiliation(s)
- Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - M Gayanethra Kaumini
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Panetti GB, Robinson JR, Schelter EJ, Walsh PJ. Expanding the Rare-Earth Metal BINOLate Catalytic Multitool beyond Enantioselective Organic Synthesis. Acc Chem Res 2021; 54:2637-2648. [PMID: 34014657 DOI: 10.1021/acs.accounts.1c00148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Shibasaki's rare earth alkali metal BINOLate (REMB) framework has provided chemists with a general catalyst platform to access a range of enantioenriched small molecules from the single, commercially available pro-ligand (R)- or (S)-BINOL. A defining feature of these heterobimetallic frameworks is the high level of catalyst tunability, achieved through the simple modulation of the central rare-earth cation and peripheral alkali metal cations. While this family of multifunctional catalysts displays impressive generality and catalytic capability, detailed mechanistic understanding of these complex, multimetallic systems was lacking prior to our investigations. This backdrop served as initial inspiration for our investigations of this privileged class of complexes over the past decade, which have led to new and exciting advances in catalysis and beyond.In this Account, we describe our investigations using Shibasaki's framework focusing on the central metal-ion, the BINOLate ligands, and the secondary sphere cations. Our studies began with an investigation into the Lewis acidity of the complexes, where we demonstrated that Lewis bases readily coordinate to REMB frameworks when lithium occupies the secondary coordination sphere. This observation was contrasted by the complexes containing sodium or potassium in the secondary coordination sphere, as the rare earth cation is evidently less accessible for substrate binding. Our efforts in understanding the ligand exchange of the complexes enabled the discovery that associative processes dominate the mechanism of ligand exchange and LA/LA (Lewis acid/Lewis acid) and LA/BB (Lewis acid/Brønsted base) catalysis by the REMB frameworks. Replacing metal cations in the secondary coordination sphere with the N,N,N',N'-tetramethylguanidinium cation delivered an effective precatalyst that is air and water stable over the course of 6 months.To expand the reactivity of the REMB, we investigated the ability of UIV cations to occupy the primary coordination sphere and ZnEt+ and Cu(DBU)+ cations to occupy the secondary coordination sphere. Synthesizing the REMB complexes using the thiol congener monothioBINOL provided an unusual anionic REMB framework, driven by the oxophilicity of the lithium cations. Using the REMB as a platform for investigating the CeIII/CeIV redox couple, we demonstrated that, while oxidative cerium functionalization is observed in the case of lithium containing REMBs, salt elimination is observed in the sodium, potassium, and cesium containing REMBs. Furthermore, we found that while the rate of heterogeneous electron transfer for CeIII was ks(CsI) > ks(KI) > ks(NaI) > ks(LiI), the rates of reaction with the oxidant trityl chloride trended in the opposite order with kobs(LiI) ≫ kobs(NaI) > kobs(KI) > kobs(CsI). We attribute this to the ability to form inner-sphere complexes with the oxidant, rather than differences in redox potential or reorganization energies.Applying our knowledge in ligand exchange and redox behavior of Ce containing REMB complexes, we detailed the mechanism for oxidation of the heterochiral cerium REMB frameworks, reiterating the importance of the formation of inner-sphere complexes in the oxidation chemistry of cerium. There are many different avenues for both organic and inorganic investigation of Shibasaki's REMB framework, and our works have demonstrated the richness of the structural chemistry and properties of this framework that inform mechanism and properties of these privileged catalysts.
Collapse
Affiliation(s)
- Grace B. Panetti
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, 324 Brook St., Providence, Rhode Island 02912, United States
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Walsh
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Deng M, Schley ND, Ung G. High circularly polarized luminescence brightness from analogues of Shibasaki's lanthanide complexes. Chem Commun (Camb) 2020; 56:14813-14816. [PMID: 33140754 DOI: 10.1039/d0cc06568d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
To reach the promising potential of circularly polarized luminescence (CPL) emitters, high CPL brightness must be achieved. We describe the synthesis of analogues of the C3-symmetrical Shibasaki's lanthanide complexes (Sm, Tb, Dy) supported by enantiopure 5,5',6,6',7,7',8,8'-octahydro-1,1'-bi-2-naphthol (H8-Binol). The complexes exhibit visible luminescence in solution with exceptionally high quantum yields for Sm (4%) and Dy (17%), and strong circularly polarized luminescence for Sm, Tb, and Dy (|glum| up to 0.44, 0.32, 0.33, respectively). Altogether, these complexes possess amongst the strongest CPL brightness reported to date in lanthanide molecular complexes (up to 782 M-1 cm-1 for Tb).
Collapse
Affiliation(s)
- Min Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| |
Collapse
|
7
|
Govor EV, Morozov AN, Rains AA, Mebel AM, Kavallieratos K. Spectroscopic and Theoretical Insights into Surprisingly Effective Sm(III) Extraction from Alkaline Aqueous Media by o-Phenylenediamine-Derived Sulfonamides. Inorg Chem 2020; 59:6884-6894. [PMID: 32338874 DOI: 10.1021/acs.inorgchem.0c00309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
Alkaline high-level waste (HLW) generated as a result of years of nuclear weapons production has complicated composition and requires comprehensive treatment methods, which would allow concentrating its most radiotoxic components in a small volume for geological disposal. We have investigated six alkyl-substituted o-phenylenediamine-derived sulfonamides for extraction and consecutive stripping of Sm(III) from alkaline aqueous media. Up to 81% of Sm(III) recovery at pH 13.0-13.5 was achieved by disulfonamide (dsa) or dsa/Et3N in CH2Cl2, measured after contact with organic phases and subsequent stripping with 0.1 M HNO3. The use of Et3N dramatically enhances Sm(III) extraction at lower pH ranges (10.5-11.5) but decreases extraction at pH 13.0-13.5, while control experiments with Et3N and no dsa showed no extraction. Analysis of the extraction equilibria gave a 1:1 sulfonamide-Sm(III) complexation ratio, with the extracted species also presumed to contain coordinated H2O or OH-, as also shown by DFT calculations. Titration experiments of sulfonamides with Sm(III) in CH3CN were consistent with a 1:1 complexation ratio of dsa-6 to Sm(III) with a K11 = 6.6 × 107 M-1 derived from nonlinear regression analysis of the 1:1 binding isotherm. Theoretical DFT calculations determined the structures of possible species formed during extraction and the thermodynamics of extraction processes based on several initial [Sm(OH)y(NO3)z(H2O)x]3-y-z species and 1:1 Sm(III)/dsa-32- complexes formed in the organic phase, in which dsa complexes to Sm(III) in its bis-deprotonated form (denoted below as dsa-32-). Organization of close ion pairs of type {Na[Sm(dsa-32-)(OH)2]·2H2O} was shown to be thermodynamically favorable for extraction from alkaline aqueous media with pH = 13.0-13.5. Theoretical calculations also demonstrated thermodynamically favorable coordination to Am(III).
Collapse
Affiliation(s)
- Evgen V Govor
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Applied Research Center, Florida International University, Miami, Florida 33174, United States
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - April A Rains
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Konstantinos Kavallieratos
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
8
|
Panetti GB, Varela EJ, Gau MR, Schelter EJ, Walsh PJ. An investigation of the binding of (S)-monothioBINOLate to rare earth metal cations. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1602773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Affiliation(s)
- Grace B. Panetti
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Elena J. Varela
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael R. Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Patrick J. Walsh
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|