1
|
Li Y, Wang Y, Cheng J, Huang L, Gao D, Zou G, Zhao Y, Lin Z. Two histidine-templated metal phosphate-oxalates: solvent-free synthesis, luminescence, and proton-conducting properties. Dalton Trans 2024; 53:9675-9679. [PMID: 38814118 DOI: 10.1039/d4dt01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Two new histidine-templated metal phosphate-oxalates (MPOs) were prepared under solvent-free conditions. Single-crystal X-ray diffraction analysis reveals that they have layered and chainlike structures, respectively. Under ultraviolet light irradiation, the two MPOs exhibit blue luminescence originating from histidine templates. Their proton-conducting properties were also investigated under different conditions.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Yulin Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Juan Cheng
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ling Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Daojiang Gao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yan Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
2
|
Said M, Kang CS, Wang S, Sheffler W, Salveson PJ, Bera AK, Kang A, Nguyen H, Ballard R, Li X, Bai H, Stewart L, Levine P, Baker D. Exploration of Structured Symmetric Cyclic Peptides as Ligands for Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:9736-9744. [PMID: 36397834 PMCID: PMC9648172 DOI: 10.1021/acs.chemmater.2c02597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Despite remarkable advances in the assembly of highly structured coordination polymers and metal-organic frameworks, the rational design of such materials using more conformationally flexible organic ligands such as peptides remains challenging. In an effort to make the design of such materials fully programmable, we first developed a computational design method for generating metal-mediated 3D frameworks using rigid and symmetric peptide macrocycles with metal-coordinating sidechains. We solved the structures of six crystalline networks involving conformationally constrained 6 to 12 residue cyclic peptides with C2, C3, and S2 internal symmetry and three different types of metals (Zn2+, Co2+, or Cu2+) by single-crystal X-ray diffraction, which reveals how the peptide sequences, backbone symmetries, and metal coordination preferences drive the assembly of the resulting structures. In contrast to smaller ligands, these peptides associate through peptide-peptide interactions without full coordination of the metals, contrary to one of the assumptions underlying our computational design method. The cyclic peptides are the largest peptidic ligands reported to form crystalline coordination polymers with transition metals to date, and while more work is required to develop methods for fully programming their crystal structures, the combination of high chemical diversity with synthetic accessibility makes them attractive building blocks for engineering a broader set of new crystalline materials for use in applications such as sensing, asymmetric catalysis, and chiral separation.
Collapse
Affiliation(s)
- Meerit
Y. Said
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Christine S. Kang
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Shunzhi Wang
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - William Sheffler
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Patrick J. Salveson
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Asim K. Bera
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Alex Kang
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Hannah Nguyen
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Ryanne Ballard
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Xinting Li
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Hua Bai
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Lance Stewart
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - Paul Levine
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
| | - David Baker
- Institute
for Protein Design, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195, United States
- Howard
Hughes Medical Institute, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Chen Y, Tao K, Ji W, Makam P, Rencus-Lazar S, Gazit E. Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials. Protein Pept Lett 2021; 27:688-697. [PMID: 32048950 DOI: 10.2174/0929866527666200212123542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Supramolecular self-assembled functional materials comprised of cyclic dipeptide building blocks have excellent prospects for biotechnology applications due to their exceptional structural rigidity, morphological flexibility, ease of preparation and modification. Although the pharmacological uses of many natural cyclic dipeptides have been studied in detail, relatively little is reported on the engineering of these supramolecular architectures for the fabrication of functional materials. In this review, we discuss the progress in the design, synthesis, and characterization of cyclic dipeptide supramolecular nanomaterials over the past few decades, highlighting applications in biotechnology and optoelectronics engineering.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pandeeswar Makam
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|