1
|
Elenkova D, Dimitrova Y, Tsvetkov M, Morgenstern B, Milanova M, Todorovsky D, Zaharieva J. Investigation of the Sensing Properties of Lanthanoid Metal-Organic Frameworks (Ln-MOFs) with Terephthalic Acid. Molecules 2024; 29:3713. [PMID: 39125117 PMCID: PMC11314416 DOI: 10.3390/molecules29153713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The solvothermal synthesis of LnCl3.nH2O with terephthalic acid (benzene-1,4-dicarboxylic acid, H2BDC) produced metal-organic frameworks (LnBDC), [Ln2(BDC)3(H2O)4]∞, where Ln = Sm, Eu, Tb, and Dy. The materials obtained were characterized by a number of physico-chemical techniques. The influence of the ionic radius of the lanthanides on the microstructural characteristics of the Ln-MOFs was evaluated by performing Rietveld refinement. The MOFs obtained were tested as fluorescent sensors for numerous cations and anions in water. The highly luminescent EuBDC and TbBDC demonstrated multi-responsive luminescence sensing functions to detect Ag(I), Fe(III), Cr(III), and Cr(VI), which are essential for their environmental applications. By applying the non-linear Stern-Volmer equation, the fluorescent quenching mechanism was determined. The stability of the obtained materials in water in a wide pH range (acidity pH = 4 and alkalinity pH = 9 solutions) was confirmed.
Collapse
Affiliation(s)
- Denitsa Elenkova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Yana Dimitrova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Martin Tsvetkov
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Bernd Morgenstern
- Inorganic Solid State Chemistry, Saarland University, Campus Geb. C4 1, 66123 Saarbrücken, Germany;
| | - Maria Milanova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Dimitar Todorovsky
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Joana Zaharieva
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| |
Collapse
|
2
|
Garg N, Deep A, Sharma AL. Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Crit Rev Anal Chem 2024; 54:1121-1145. [PMID: 35968634 DOI: 10.1080/10408347.2022.2106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the expansion and advancement in agricultural and chemical industries, various toxic heavy metals such as lead, cadmium, mercury, zinc, copper, arsenic etc. are continuously released into the environment. Intake of sources contaminated with such toxic metals leads to various health issues. Keeping the serious effects of these toxic metal ions in view, various organic-inorganic nanomaterials based sensors have been exploited for their detection via optical, electrochemical and colorimetric approaches. Since a chemical sensor works on the principle of interaction between the sensing layer and the analytes, a sensor material with large surface area is required to enable the largest possible interaction with the target molecules and hence the sensitivity of the chemical sensor. However, commonly employed materials such as metal oxides and conducting polymers tend to feature relatively low surface areas, and hence resulting in low sensitivity of the sensor. Metal-Organic Frameworks (MOFs) nanostructures are another category of organic-inorganic materials endowed with large surface area, ultra-high and tunable porosity, post-synthesis modification features, readily available active sites, catalytic activity, and chemical/thermal stability. These properties provide high sensitivity to the MOF based sensors due to the adsorption of large number of target analytes. The current review article focuses on MOFs based optical and electrochemical sensors for the detection of heavy metals.
Collapse
Affiliation(s)
- Naini Garg
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Materials Science & Sensor Applications (MSSA) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Amit L Sharma
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Li T, Chen Z, Zhao Z, Liu Z. A portable test strip fabricated of luminescent lanthanide-functionalized metal-organic frameworks for rapid and visual detection of tetracycline antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4459-4466. [PMID: 37642116 DOI: 10.1039/d3ay01169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tetracycline antibiotics (TCs) are commonly used antibiotics in the treatment of infections, but their overuse has a negative impact on human health and ecosystems. Thus, the development of a facile and on-site visualization method for TC detection is necessary. Here, we propose the potential of using lanthanide-functionalized metal-organic framework (MOF) composites (Ag+/Tb3+@UiO-66-(COOH)2, ATUC) as a probe for the rapid detection of tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC), and doxycycline (DOX) residues, in which UiO-66-(COOH)2 (UC) could be utilized to provide an interaction microenvironment, Tb3+ as recognition units and Ag+ as a fluorescence enhancer. Upon exposure to TCs, significant luminescence quenching of ATUC excited at 255 nm was observed due to the inner filter effect (IFE) and photo-induced electron transfer (PET), and the established strategy has a detection limit (LOD) of 11.0, 20.1, 9.1, and 22.5 nM for TC, CTC, OTC, and DOX, respectively. More importantly, given its portability and conspicuous luminescence color gradation variation, a portable test strip based on ATUC was manufactured and the results could be distinguished immediately by the naked eye and smartphone analysis, allowing for on-site rapid quantitative assay of TCs, not only in the laboratory but also in a point-of-care setting.
Collapse
Affiliation(s)
- Tingxia Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongxiu Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongshuai Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
4
|
Feng J, Kong C, Chen Y, Cen P, Ding Y, Guo Y, Zhang F, Liu X. Lanthanide-MOFs as multi-responsive photoluminescence sensor for sensitively detecting Fe 3+, Cr 2O 72- and nitrofuran antibiotics. RSC Adv 2023; 13:26196-26202. [PMID: 37671001 PMCID: PMC10475880 DOI: 10.1039/d3ra03817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
Fast and selective detection of contaminants plays a key role in meeting human health and environmental concerns. Herein, two groups of isostructural lanthanide MOFs, [Ln(Hpta)(oxalic acid)]·H2O (1-Eu, 2-Gd) and [Ln(pta)(oxalic acid)0.5(H2O)2]·2H2O (3-Eu, 4-Gd) (H2pta = 2-(4-pyridyl)-terephthalic acid, C2O4- = oxalic acid), were synthesized by solvothermal method. Single crystal X-ray diffraction reveals that 1 and 2 are 3D neutral frameworks, while 3 and 4 consist of 2D layers with parallelogram holes and stack into 3D networks through O-H⋯N and O-H⋯O hydrogen bonding interactions. All complexes remain crystalline and stable below 400 °C, suggesting preeminent thermostability. Noteworthily, only 3 shows excellent chemical stability in water and organic solvent. Therefore, the solid-state fluorescence spectrum was used to characterize 3 which exhibited intense red luminescence. The N active sites in the pore channels of 3 are conducive to displaying a distinct quenching effect for Fe3+ cations in aqueous solutions, Cr2O72- anions in DMF and DMA solutions, and nitrofuran antibiotics in the DMF solvent. Overall, 3 is a prospective luminescent sensor for detecting Fe3+, Cr2O72- and nitrofuran antibiotics.
Collapse
Affiliation(s)
- Jingjuan Feng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Cunding Kong
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yunhui Chen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peipei Cen
- College of Public Health, College of Basic Medical Science, Ningxia Medical University YinChuan 750021 China
| | - Yi Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Fengyuan Zhang
- College of Public Health, College of Basic Medical Science, Ningxia Medical University YinChuan 750021 China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
5
|
Saikia P, Kumar Dolui S, Pran Mahanta S. CsPbBr 3 perovskites: A dual fluorescence sensor to distinguish ethanol from methanol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122309. [PMID: 36621025 DOI: 10.1016/j.saa.2022.122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/03/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
In recent years, lead halide perovskites have emerged as a promising material with defect tolerance, thermally stable, and optoelectronic properties. However, the instability is the major factor which hinder their potential applications in various fields. This work demonstrates the chemical stability of Cesium Lead Bromide (CsPbBr3) under different passivation condition with an objective to develop alcohol sensor. Cetyltrimethyl ammonium bromide (CTAB) passivated CsPbBr3 demonstrated as a turn off fluorescent probe for alcohols and more significantly turn on fluorescent probe for ethanol. Herein, it is shown that CTAB passivated CsPbBr3 can effectively discriminate ethanol from methanol owing to its different mode of interaction with ethanol and methanol. The outstanding optical properties of halide perovskites with an ultra-low detection limit of 7.3 ppb was obtained for ethanol detection. The sensing performance of the material is also validated with petrol and cough syrup samples showing excellent performance for future implementation with practical applications.
Collapse
Affiliation(s)
- Priyankamoni Saikia
- Department of Chemical Sciences, Tezpur University, Sonitpur 784028, Assam, India
| | - Swapan Kumar Dolui
- Department of Chemical Sciences, Tezpur University, Sonitpur 784028, Assam, India.
| | - Sanjeev Pran Mahanta
- Department of Chemical Sciences, Tezpur University, Sonitpur 784028, Assam, India.
| |
Collapse
|
6
|
Zhang WS, Wang GQ, Wang YX, Yang YL, Bai X, Cui H, Lu Y, Liu SX. A multifunctional cobalt-organic framework for proton conduction and selective sensing of Fe 3+ ions. Dalton Trans 2023; 52:4407-4414. [PMID: 36916292 DOI: 10.1039/d3dt00259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Developing multifunctional metal-organic frameworks (MOFs) is a new research trend. MOFs have shown remarkable performances in both proton conduction and fluorescence sensing, but the MOFs integrating the two performances are scarce. Herein, a Co-MOF, [Co6(oba)4(Hatz)(atz)(H2O)2(μ3-OH)2(μ2-OH)]·H2O (1, H2oba = 4,4-oxybis(benzoic acid), Hatz = 5-amino-1H tetrazole), has been assembled by Co2+ ions with H2oba and Hatz ligands, providing a unique example of multifunctional MOFs with both proton conduction and fluorescence sensing performances. The framework of 1 displays a pillar-layer structure built by the oba ligand as a pillar and a layer composed of Co-clusters and atz linkers. Because large-scale single crystals of 1 were successfully synthesized, the proton conduction ability of 1 was investigated using single crystal samples. 1 exhibits highly anisotropic conduction with conductivity values of 1.1 × 10-3 S cm-1 along the [001] direction and 9.1 × 10-6 S cm-1 along the [010] direction at 55 °C and 95% RH, respectively. Meanwhile, the fluorescence sensing of 1 towards metal ions was studied in aqueous solutions. Attractively, 1 may sensitively and selectively detect Fe3+ ions in the presence of other interfering ions by fluorescence quenching.
Collapse
Affiliation(s)
- Wen-Sha Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Guang-Qing Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Yu-Xin Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Yan-Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Xue Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Hong Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Shu-Xia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| |
Collapse
|
7
|
Arroyos G, E M Campanella J, M da Silva C, C G Frem R. Detection of anthrax biomarker and metallic ions in aqueous media using spherical-shaped lanthanide infinite coordination polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122033. [PMID: 36283208 DOI: 10.1016/j.saa.2022.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
We report a lanthanide-based infinite coordination polymer (ICP) system synthesized using pyrazole-3,5-dicarboxylic acid as linker, malonic acid as coordination modulator and water as solvent. The precursors self-assembly into microspherical particles, which are water-stable and exhibit excellent dispersibility. Bimetallic samples based on Tb3+ doped with Eu3+ were investigated as ratiometric dipicolinic acid (DPA) sensors, which is a biomarker for Bacillus anthracis spores. Along with the calibration curves, a detection in a real sample extracted from Bacillus subtilis (model organism) was performed. The samples proved to be highly sensitive and selective for ratiometric DPA detection. In a secondary study, the monometallic sample containing only Tb3+ was also investigated as a sensor for ionic species in aqueous media. The Cr3+, Fe3+, Cu2+, and Cr2O72- ionic species could be detected in water by luminescence quenching mechanism. Therefore, we found that the reported ICP system can be judiciously constructed in order to act as a multimodal probe for several chemical species.
Collapse
Affiliation(s)
- Guilherme Arroyos
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, SP 14800-060, Brazil.
| | - Jonatas E M Campanella
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, SP 14800-060, Brazil
| | - Caroline M da Silva
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, SP 14800-060, Brazil
| | - Regina C G Frem
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, SP 14800-060, Brazil
| |
Collapse
|
8
|
Zhou Z, Li S, Wang W, Ma D, Zhao H, Jia L, Jia Y, Yu B. Two bis-color excited luminescent sensors of two-dimensional Cd(II)-MOFs bearing mixed ligands for detection of ions and pesticides in aqueous solutions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Meng XW, Ding T, Liu B, Gong XS, Liu B, Zheng LN. Highly selective C 2H 2 and CO 2 capture based on two new Zn II-MOFs and fluorescence sensing of two doped MOFs with Eu III. CrystEngComm 2023. [DOI: 10.1039/d3ce00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Two Zn(ii)-based MOFs have been constructed. The activated Zn-MOF1 and Zn-MOF2 show selective separation of C2H2 and CO2 over CH4. Eu@Zn-MOF1 and Eu@Zn-MOF2 were obtained by adding EuIII ions and showed selectivity to Fe3+ ions in aqueous solution.
Collapse
|
10
|
Wang JJ, Han XL, Chen JX, Li JX, Zuo MJ, Chen WY, Chen LM, Jin CY. Luminescent Zn(II) and Cd(II) coordination polymers based on naphthalene tetracarboxylic acid and 4,4'-bipyridine for sensing of nitrobenzene, Fe 3+ and Cr 2O 72− ions. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2146497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jun-Jie Wang
- School of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials, Anyang Normal University, Anyang, China
| | - Xue-Lian Han
- School of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials, Anyang Normal University, Anyang, China
| | - Jing-Xia Chen
- School of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials, Anyang Normal University, Anyang, China
| | - Ji-Xiang Li
- School of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials, Anyang Normal University, Anyang, China
| | - Meng-Juan Zuo
- School of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials, Anyang Normal University, Anyang, China
| | - Wan-Ying Chen
- School of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials, Anyang Normal University, Anyang, China
| | - Li-Mei Chen
- School of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials, Anyang Normal University, Anyang, China
| | - Chao-Yue Jin
- School of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials, Anyang Normal University, Anyang, China
| |
Collapse
|
11
|
Liu X, Liu Y, Feng S, Lu L. Two luminescent Zn(II) coordination complexes as fluorescence-responsive sensors for efficient detection of Cu2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Chang M, Zhang M, Hu H, Liang S. Highly selective fluorescence detection of Pt 4+ over Pd 2+ and Pt 2+ using a polyethyleneimine-based nanosensor prepared via facile three-component reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121466. [PMID: 35696970 DOI: 10.1016/j.saa.2022.121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
A novel polyethyleneimine (PEI)-based polymeric nanosensor (named PEIMP) was developed for specific fluorescence enhanced sensing of Pt4+ ion in aqueous media. The sensor was fabricated via "one-pot" three-component reaction using ortho-phthalaldehyde (OPA), PEI and mercaptopurine as raw materials, by which the formation of isoindole fluorophore and its chemical grafting onto PEI chain were achieved simultaneously. The morphology, size and structure of PEIMP have been characterized by various techniques. In buffered aqueous solution (pH 7.0), PEIMP had the ability to specifically bind with Pt4+ producing notable increase in fluorescence emission at 463 nm (excited at 395 nm). Based on investigations on the sensing mechanism, the fluorescence turn-on response towards Pt4+ was attributed to the binding of Pt4+ with purine group in PEIMP resulting in the inhibition of photoinduced electron transfer from purine to isoindole fluorophore. Under the optimal conditions (pH 7.0, incubated at 37 ℃ for 20 min) the detection of Pt4+ could be achieved with the linear range of 0.1-10 μM and the detection limit of 80 nM. The sensor had the advantages of low-cost raw materials, simple and environmental-friendly synthesis and analytical detection procedures. What's more, it could selectively and sensitively detect Pt4+ without the effects from common transition metal ions (Pb2+, Fe3+, Cr3+, Al3+, Ag+, Co2+, Hg2+, Cd2+, Cu2+, Mg2+, Ni2+, Mn2+, Zn2+), especially precious metalions of Pt2+ and Pd2+. The proposed method had been successfully applied to quantify Pt4+ in wastewater and urine samples, and also proved to be potential for monitoring Pt4+ in biological systems.
Collapse
Affiliation(s)
- Mingyue Chang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Moru Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Haihong Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Shucai Liang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
13
|
Aliphatic-Bridged Early Lanthanide Metal–Organic Frameworks: Topological Polymorphism and Excitation-Dependent Luminescence. INORGANICS 2022. [DOI: 10.3390/inorganics10100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Six new three-dimensional metal–organic frameworks based on early lanthanide(III) cations and trans-1,4-cyclohexanedicarboxylic acid (H2chdc) were obtained. Their crystal structures were determined by single-crystal X-ray diffraction analysis. The structure of [La2(H2O)4(chdc)3]·2DMF·H2O (1; DMF = N,N-dimethylformamide) contains one-dimensional infinite La(III)-carboxylate chains interconnected by cyclohexane moieties to form a highly porous polymeric lattice with 30% solvent accessible volume. Compounds [Ln2(phen)2(chdc)3]·0.75DMF (2Ln; Ln3+ = Ce3+, Pr3+, Nd3+ and Sm3+; phen = 1,10-phenanthroline) are based on binuclear carboxylate building blocks, which are decorated by chelate phenanthroline ligands and interconnected by cyclohexane moieties to form more dense isostructural coordination frameworks with primitive cubic pcu topology. Compound [Nd2(phen)2(chdc)3]·2DMF·0.67H2O (3) is based on secondary building units similar to 2Ln and contains a coordination lattice isomeric to 2Ln with a rare hexagonal helical snz topology. Thermal stability and luminescent properties were investigated. For 2Sm, a strong and nonmonotonous dependence of the luminescence color on the variation of excitation wavelength was revealed, changing its emission from pinkish red at λex = 340 nm to white at λex = 400 nm, and then to yellow at lower excitation energies. Such nonlinear behavior was rationalized in terms of the contribution of several different luminescence mechanisms. Thus, 2Sm is a rather rare example of a highly tunable monometallic lanthanide-based luminophore with possible applications in light-emitting devices and optical data processing.
Collapse
|
14
|
Qu Z, Mao C, Zhu X, Zhang J, Jiang H, Chen R. Pd-Decorated Hierarchically Porous Carbon Nanofibers for Enhanced Selective Hydrogenation of Phenol. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengyan Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chao Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
15
|
Chen Z, Li P, Guo C, Chen X, Liu B, Zou H, Liang W, Xu H. 2D Metal‐Organic Framework Based on the Functionalized Anthracene Derivative as A Dual‐Functional Luminescent Probe for Fe
3+
and Ascorbic Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202202059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zi‐Yi Chen
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Peng‐Cheng Li
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Cui Guo
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Xiao‐Huan Chen
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Bing‐Jie Liu
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Hui‐Jing Zou
- Department of Biology College of Arts and Science New York University New York, NY 10012 USA
| | - Wen‐Jie Liang
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| | - Hai Xu
- College of Chemistry and Chemical Engineering Key Laboratory of Hunan Province for Chemical Power Source Central South University Changsha Hunan 410083 P. R. China
| |
Collapse
|
16
|
Li HS, Gong Y, Ji C, Wu P, Gao B, Du Y, Wang J. Selective detection of sulfasalazine antibiotic and its controllable photodegradation into 5-aminosalicylic acid by visible-light-responsive metal-organic framework. Dalton Trans 2022; 51:11730-11736. [PMID: 35852461 DOI: 10.1039/d2dt01270g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extensive use of sulfasalazine (SSZ) antibiotics has brought potential threats to aquatic ecosystems and human health. Thus, necessary measures for the removal of SSZ must be taken to prevent arbitrary antibiotic exposure to the aquatic environment. However, not all the recent photocatalysts that have been used for the degradation of SSZ could not achieve the controlled release of SSZ and hence are losing their medicinal values. Herein, by utilizing an Eosin Y moiety as an efficient light-harvesting and emission site, an Eosin Y-based visible-light-responsive metal-organic framework has been synthesized and characterized, which exhibits high selectivity for detecting the antibiotic SSZ in water and simulated physiological conditions, with a detection limit of below 1 μM (0.4 μg mL-1). It also represents the first example of a MOF-based photocatalyst for the controllable degradation of SSZ into 5-aminosalicylic acid with excellent catalytic activity and recyclability.
Collapse
Affiliation(s)
- Han-Shu Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Yuxuan Gong
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Chen Ji
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Bingzhuo Gao
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Yufan Du
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| |
Collapse
|
17
|
Lunev AM, Belousov YA. Luminescent sensor materials based on rare-earth element complexes for detecting cations, anions, and small molecules. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Jiajaroen S, Dungkaew W, Kielar F, Sukwattanasinitt M, Sahasithiwat S, Zenno H, Hayami S, Azam M, Al-Resayes SI, Chainok K. Four series of lanthanide coordination polymers based on the tetrabromobenzene-1,4-dicarboxylate ligand: structural diversity and multifunctional properties. Dalton Trans 2022; 51:7420-7435. [PMID: 35506589 DOI: 10.1039/d2dt00007e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Four series of lanthanide-based coordination polymers (LnCPs), namely [Ln(Br4bdc)1.5(MeOH)3] (1Ln; Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy), [Ln2(Br4bdc)2(NO3)2(MeOH)4] (2Ln; Ln = Ce, Pr, Nd, Sm), [Ln(Br4bdc)(NO3)(MeOH)] (3Ln; Ln = Gd, Tb, Dy), and [Ln2(Br4bdc)3(H2O)2.3(MeOH)2.7] (4Ln; Ln = Gd, Tb, Dy) have been synthesized by reacting hydrated lanthanide(III) salts with tetrabromobenzene-1,4-dicarboxylic acid (H2Br4bdc) in different solvents under solvothermal conditions. The structural diversity found in the system mainly resulted from the effects of anions, solvents, and the variation in the ionic radii of the lanthanide(III) ions. Compounds in series 1Ln feature a two-dimensional (2D) layered structure with sql topology based on {(Ln(COO)2)2(μ-COO)2} secondary building units (SBUs). Compounds in series 2Ln and 3Ln comprise, respectively, infinite uniform and alternate chains of {Ln(COO)2}n SBUs that are assembled into a similar network topology to 1Ln. Meanwhile, compounds in series 4Ln feature 3D coordination networks of a pcu α-Po topological net consisting of binuclear {Ln2(COO)3} SBUs. The formation of polymeric networks in series 1Ln-4Ln is facilitated by the numerous coordination sites of the ligand Br4bdc2- and the fact that its bromine atoms can participate in the formation of various types of intermolecular interactions. The solid-state photoluminescence studies on Eu- (1Eu) and Tb- (1Tb, 3Tb, 4Tb) containing compounds indicate that the Br4bdc2- ligands can efficiently sensitize Eu3+ and Tb3+ emission. Notably, such compounds exhibit highly sensitive fluorescence sensing for acetone, water, and Fe3+ ions via the fluorescence quenching effect. As the representatives of the series, activated 1Eu, 2Pr, 3Tb, and 4Tb show the maximum CO2 uptake capacities of 170.4, 273.7, 255.3, and 303.5 cm3 g-1, respectively, at 50 bar and 298 K with good repeatability of the adsorption-desorption properties. Magnetic studies indicate that the Gd- and Dy-based compounds 1Gd, 1Dy, 3Gd, 3Dy, and 4Gd show simple paramagnetic behaviours, whereas compound 4Dy exhibits weak ferromagnetic interactions.
Collapse
Affiliation(s)
- Suwadee Jiajaroen
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand. .,Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 43100, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), The National Science and Technology Development Agency, Pathum Thani 12121, Thailand
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Ku-mamoto University, 2-39-1 Kurokami, Chuoku, Kumamoto, 860-8555 Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Ku-mamoto University, 2-39-1 Kurokami, Chuoku, Kumamoto, 860-8555 Japan
| | - Mohammad Azam
- Department of Chemistry, College of Sciences, King Saud University, PO BOX 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Saud I Al-Resayes
- Department of Chemistry, College of Sciences, King Saud University, PO BOX 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| |
Collapse
|
19
|
Luminescent metal-organic frameworks constructed by a V-shaped pentacarboxylic acid ligand as bifunctional chemosensors for Fe3+ and Cr2O72-. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Fajal S, Mandal W, Majumder D, Shirolkar MM, More YD, Ghosh SK. Unfolding the Role of Building Units of MOFs with Mechanistic Insight Towards Selective Metal Ions Detection in Water. Chemistry 2022; 28:e202104175. [PMID: 35192215 DOI: 10.1002/chem.202104175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/09/2022]
Abstract
The potential emergence of fluorescence-based techniques has propelled research towards developing probes that can sense trace metal ions specifically. Although luminescent metal-organic frameworks (MOFs) are well suited for this application, the role of building blocks towards detection is not fully understood. In this work, a systematic screening by varying number of Lewis basic (pyridyl-N atoms) sites is carried out in a series of isostructural, robust UiO-67 MOFs, and targeting a model metal ion-Fe3+ . All the three fluorescent MOFs are seen to present quenching response towards Fe3+ ions in water. However, UiO-67@N exhibits highly selective and sensitive response, whereas emission of both UiO-67 and UiO-67@NN is quenched by several metal ions. Detailed experimental and theoretical mechanistic investigation is carried out in addition to demonstration of UiO-67@N being able to sense trace amount of Fe3+ ions in synthetic biological water sample. Further, UiO-67@N based mixed-matrix membrane (MMM) has been prepared and employed to mimic the real time Fe3+ ions detection in water.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Dipanjan Majumder
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, India.,Department of Physics, Tamkang University, Tamsui, 251, Taiwan
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
21
|
Hou J, Chen Y, Zou S, Dong W, Ju Z, Lin J, Ruan Z, Liu S, Tian Z. Heterometallic Dual-Liganded AE-Ln-CPs Luminescent Probes for Efficient Sensing of Fe(III) Ions. Front Chem 2022; 10:865447. [PMID: 35464208 PMCID: PMC9021488 DOI: 10.3389/fchem.2022.865447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Iron ion is widely present in the environment and in biological systems, and are indispensable trace elements in living organisms, so development of an efficient and simple sensor for sensing Fe(III) ions has attracted much attention. Here, six heterometallic AE-Ln coordination polymers (CPs) [Ln2 (pda)4(Hnda)2Ca2(H2O)2]·MeOH (Ln = Eu (1), Tb (2); H2pda = 2,6-pyridinedicarboxylic acid, H2nda = 2,3-naphthalenedicarboxylic acid), [Ln (pda)2 (nda)AE2(HCOO)(H2O)] (AE = Sr, Ln = Eu (3), Tb (4); AE = Ba, Ln = Eu (5), Tb (6)) with two-dimensional (2D) layer structures were synthesized by hydrothermal method. All of them were characterized by elemental analysis, XRD, IR, TG, as well as single crystal X-ray diffraction. They all show infinite 2D network structure, where complexes 1 and 2 are triclinic with space group of P1¯, while 3-6 belong to the monoclinic system, space group P21/n. The solid-state fluorescence lifetimes of complexes 1, 3 and 5 are τobs1 = 1930.94, 2049.48 and 2,413.04 µs, respectively, and the quantum yields Фtotal are 63.01, 60.61, 87.39%, respectively, which are higher than those of complexes 2, 4 and 6. Complexes 1-6 all exhibited efficient fluorescence quenching response to Fe3+ ions in water, and were not interfered by the following metal ions: Cu2+, Cd2+, Mg2+, Ni2+, Co2+, Ca2+, Ba2+, Sr2+, Li+, Na+, K+, Al3+, Fe2+, Pb2+, Cr3+, Mn2+ and Zn2+. The quenching coefficient KSV for complexes 1-6 is 1.41 × 105 M−1, 7.10 × 104 M−1, 1.70 × 105 M−1, 1.57 × 105 M−1, 9.37 × 104 M−1, 1.27 × 105 M−1, respectively. The fluorescence quenching mechanism of these complexes towards Fe3+ ions was also investigated. It is possible that the weak interaction formed between the complexes and the Fe3+ ions reduce the energy transfer from the ligand to the Ln3+ ion, producing the emission burst effect. This suggests that complexes 1-6 can be candidate for efficient luminescent sensor of Fe3+.
Collapse
Affiliation(s)
- Jieqiong Hou
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, China
| | - Yanmei Chen
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
- *Correspondence: Yanmei Chen, ; Zhengfang Tian,
| | - Shuixiang Zou
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Wenwen Dong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, China
| | - Zhenghua Ju
- Analysis and Testing Center, Lanzhou University, Lanzhou, China
| | - Junqi Lin
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Zhijun Ruan
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Shanshan Liu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, China
- *Correspondence: Yanmei Chen, ; Zhengfang Tian,
| |
Collapse
|
22
|
Li JL, Xiao Y, Wang LY, Xing YH, Bai FY, Shi Z. Oriented construction of the Mixed-metal organic framework with triazine hexacarboxylic acid and fluorescence detection: Fe3+, Cr2O72- and TNP. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Selective CO2 capture and multiresponsive luminescent sensor in aqueous solutions of cadmium metal-organic framework based on trigonal rigid ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Li X, Xiu D, Shi J, Miao J, Yu Y, Song H, Lin J, Feng Q, Yu H. Visual Hg(II) sensing in aqueous solution via a new 2,5-Bis(4-pyridyl)thiazolo[5,4-d]thiazole-based fluorescence coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120367. [PMID: 34530197 DOI: 10.1016/j.saa.2021.120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
A new fluorescence coordination polymer [Zn(Py2TTz)(5-OH-IPA)]n (1) (Py2TTz = 2,5-bis(4-pyridyl)thiazolo[5,4-d]thiazole, 5-OH-IPA = 5-hydroxyisophthalic acid dianion) was synthesized, which exhibited the characteristics of fluorescence quenching and bathochromic shift toward Hg(II) in aqueous solution at pH 7.00. Mechanism study showed that the interactions between Hg(II) ions and Py2TTz ligands in 1 were responsible for the fluorescence emission change. Thanks to the specific interactions between 1 and Hg(II), excellent selectivity was achieved both in aqueous solution and in solid test paper. The detection limit of 1 for Hg(II) sensing was 125.76 nmol L-1 and a linear rang was 1.00-10.00 μmol L-1. More importantly, satisfactory recovery and accuracy of 1 for Hg(II) sensing were also obtained in buffer-free real water samples.
Collapse
Affiliation(s)
- Xin Li
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Deping Xiu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Junjie Shi
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jiaran Miao
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yingying Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Huihua Song
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jin Lin
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Feng
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Haitao Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
25
|
He QQ, Yao SL, Zheng TF, Xu H, Liu SJ, Chen JL, Li N, Wen HR. A multi-responsive luminescent sensor based on a stable Eu(iii) metal–organic framework for sensing Fe3+, MnO4−, and Cr2O72− in aqueous solutions. CrystEngComm 2022. [DOI: 10.1039/d1ce01503f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A stable benzothiadiazole-based Eu(iii) metal–organic framework with cco topology has been successfully constructed, and represents the multifunctional fluorescence sensor toward Fe3+, MnO4− and Cr2O72− in aqueous solutions.
Collapse
Affiliation(s)
- Qi-Qi He
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Shu-Li Yao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Na Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P.R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
26
|
Asiwal EP, Shelar DS, Gujja CS, Manjare ST, Pawar SD. A Ni-MOF based luminescent sensor for selective and rapid sensing of Fe( ii) and Fe( iii) ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02263j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a bis(N,N-trimellitoyl)-4,4′-oxydianiline linker was synthesized and characterized by spectroscopic techniques. The molecular structure and luminescence intensity of the Ni-MOF treated with different metal ions were investigated.
Collapse
Affiliation(s)
- Ekta P. Asiwal
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| | - Divyesh S. Shelar
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| | - Chaturvedi S. Gujja
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| | - Sudesh T. Manjare
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| | - Suresh D. Pawar
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| |
Collapse
|
27
|
Yan YT, Wu YL, Zheng LN, Wei-Cai, Tang PF, Wu WP, Zhang WY, Wang YY. Two porous three-dimensional (3D) metal–organic frameworks based on diverse metal clusters: selective sensing of Fe 3+ and Cr 2O 72−. NEW J CHEM 2022. [DOI: 10.1039/d1nj06217d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a rigid 3,5-di(2′,5′-dicarboxylphenyl)benzoic acid, two porous 3D MOFs have been synthesized and characterized, and the luminescent properties have been studied.
Collapse
Affiliation(s)
- Yang-Tian Yan
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Yun-long Wu
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Li-Na Zheng
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Wei-Cai
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Peng-Fei Tang
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Wei-Ping Wu
- College of Chemistry and Environmental Engineering and Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science and School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science and School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
28
|
Hu Q, Xu T, Gu J, Zhang L, Liu Y. A series of isostructural lanthanide metal-organic frameworks: effective fluorescence sensing for Fe3+, 2,4-DNP and 4-NP. CrystEngComm 2022. [DOI: 10.1039/d2ce00106c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the fluorescence properties, lanthanide metal-organic frameworks (Ln-MOFs) materials have potential application in the detections of metal ions and nitro-aromatic explosives. Herein, a series of isostructural Ln-MOFs [Ln2(PIA)3(DMF)3(CH3OH)] (JLU-MOF201-Ln,...
Collapse
|
29
|
Amidinium sulfonate hydrogen-bonded organic framework with fluorescence amplification function for sensitive aniline detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Zhao XY, Yang QS, Wang J, Fu DL, Jiang DK. A novel 3D coordination polymer constructed by dual-ligand for highly sensitive detection of purine metabolite uric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120065. [PMID: 34198120 DOI: 10.1016/j.saa.2021.120065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Uric acid (UA), as the final product of purine metabolism, exists in urine and serum, which plays an important role in human metabolism, immunity and other functions. The sensitive, efficient, and rapid detection of UA has far-reaching significance in clinical diagnosis and disease prevention. Herein, a novel coordination polymer constructed by dual-ligand was successfully prepared, which exhibited excellent thermal and water stability. The polymer was interlaced by coordination bonds and hydrogen bonds to form an infinitely extended three-dimensional framework, which showed a rare and novel topological structure. The complex selectively recognized UA through significant fluorescence quenching response in the presence of various interferences. The excellent detection sensitivity (the limited detection of 1.2 μM), outstanding anti-interference ability and remarkable recyclability marked the complex to be a promising sensor material towards UA. In addition, the detection mechanism of UA by the complex was investigated in detail by combining density functional theory (DFT) and a variety of other analytical methods.
Collapse
Affiliation(s)
- Xiao-Yang Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Qi-Shan Yang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Jia Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Dong-Lei Fu
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Dao-Kuan Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
| |
Collapse
|
31
|
Ahmed I, Lee HJ, Jhung SH. A Tb-based-metal–organic framework prepared under ultrasound for detection of organic amines in aqueous solution through fluorescence quenching. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Ke Z, Chen K, Li Z, Huang J, Yao Z, Dai W, Wang X, Liu C, Xiang S, Zhang Z. Dual-functional hydrogen-bonded organic frameworks for aniline and ultraviolet sensitive detection. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Aleem AR, Ding W, Liu J, Li T, Guo Y, Wang Q, Wang Y, Wang Y, Rehman FUL, Kipper MJ, Belfiore LA, Tang J. Visible-light excitable Eu 3+-induced hyaluronic acid-chitosan aggregates with heterocyclic ligands for sensitive and fast recognition of hazardous ions. Int J Biol Macromol 2021; 184:188-199. [PMID: 34119544 DOI: 10.1016/j.ijbiomac.2021.06.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023]
Abstract
Water-soluble luminescent lanthanide complexes that can be excited with visible light could enable rapid detection of toxic anions and cations in biological systems. Eu3+-induced hyaluronic acid-chitosan aggregates (EIHCA) can improve the stability, biocompatibility, efficiency, and light absorption of luminescent Eu3+ complexes. Visible-range excitation may avoid phototoxicity associated with overexposure to UV light in biological and ecological applications. In this work, we synthesized and characterized series of EIHCA complexes having three N-donor heterocyclic ligands: 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Dphen), 2,2': 6',2″-terpyridine (Tpy) and 1,10-phenanthroline monohydrate (Phen). These complexes possessed bright red fluorescence with a visible range excitation maximum. The photophysical properties of one formulation (we denote as EDL6) include fast quenching response (20 s) of the fluorescence, multi-selectivity, low limit of detection, and high quenching (Ksv) values, enabling selective, rapid and sensitive recognition of Cr2O72- and Fe3+ in aqueous solution. Furthermore, EDL6 exhibits cytocompatibility with mammalian cells that make these complexes promising biocompatible candidate as a safe replacement of organic fluorophores for fluorescence sensing applications. Thus, these new EIHCA complexes were successfully employed for the selective detection of hazardous materials in biological and aqueous environment samples.
Collapse
Affiliation(s)
- Abdur Raheem Aleem
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Wei Ding
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jin Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Taisen Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaowei Guo
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qian Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Faisal U L Rehman
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
34
|
Wang K, Hu XL, Li X, Su ZM, Zhou EL. Solvent induced two Cd-MOFs as luminescent sensors for picric acid, Fe3+ and Cr2O72-. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Fan C, Zhu B, Zhang X, Bi C, Zhang D, Zong Z, Fan Y. Highly Stable Acid-Induced Emission-Enhancing Cd-MOFs: Synthesis, Characterization, and Detection of Glutamic Acid in Water and Fe Ions in Acid. Inorg Chem 2021; 60:6339-6348. [PMID: 33866780 DOI: 10.1021/acs.inorgchem.1c00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two novel 3D fluorescent metal-organic frameworks (MOFs), [Cd(L)(bbibp)]n (1) and [Cd(L)(bbibp)0.5]n (2), where H2L = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoic acid and bbibp = 4,4'-bis(benzoimidaz-1-yl)biphenyl, were acquired through a conventional method and characterized via IR spectra, single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction (PXRD), scanning electron microscopy, N2 adsorption-desorption isotherms, and X-ray photoelectron spectroscopy (XPS). The crystal framework of Cd-MOF 1 remained stable in the range of pH = 1.0-12.0. Interestingly, the emission peak of 1 showed a red shift and exhibited a fluorescence turn-on effect in an acidic environment. X-ray diffraction measurement revealed that the crystal structure of 1 remained unchanged after immersion in a pH = 1.0 solution. In addition, Cd-MOFs 1 and 2 displayed fluorescent quenching to l-glutamic acid with high sensitivity and selectivity. Meanwhile, 1 showed high selectivity in recognizing Fe3+ under acidic conditions, which made 1 capable of detecting Fe3+ in acidic industrial wastewater. Finally, the fluorescent sensing mechanism was carefully studied by PXRD, transient fluorescence lifetime, XPS, and UV spectroscopy.
Collapse
Affiliation(s)
- Chuanbin Fan
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Bin Zhu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Xia Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Caifeng Bi
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Dongmei Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Ziao Zong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yuhua Fan
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| |
Collapse
|
36
|
Structures and magnetic properties of two dinuclear lanthanide complexes based on 8-hydroxyquinoline Schiff base derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Hu DD, Wang JJ, Hu BQ, Cao MG, Li CY, Fu YR, He YF, Lin QW, Chen JX, Wang Y. Synthesis, structures and selective luminescence sensing of cobalt(II) and copper(II) coordination architectures with 5,5'-(diazene-1,2-diyl)diisophthalic acid and 1,10-phenanthroline. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1894557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dou-Dou Hu
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Jun-Jie Wang
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Bing-Qing Hu
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Meng-Ge Cao
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Chao-Yang Li
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Yi-Ran Fu
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Yu-Fei He
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Qian-Wen Lin
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Jing-Xia Chen
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, and Henan Key Laboratory of New Optoelectric Functional Materials, Anyang Normal University, Anyang, Henan, China
| |
Collapse
|
38
|
Cao M, Wang J, Wang Y, Wang X, Li J, Chen J, Hu B, Hu D. Two cobalt(II) and copper(II) complexes with 2,4,5‐tri(4‐pyridyl)‐imidazole and 5‐hydroxyisophthalic acid as turn‐on luminescence sensors for Mg
2+
, Ca
2+
and SCN
−
ions. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Meng‐Ge Cao
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Jun‐Jie Wang
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Xin‐Fang Wang
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Ji‐Xiang Li
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Jing‐Xia Chen
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Bing‐Qing Hu
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| | - Dou‐Dou Hu
- College of Chemistry and Chemical Engineering, and Anyang Key Laboratory of New Functional Complex Materials Anyang Normol University Anyang Henan 455000 China
| |
Collapse
|
39
|
Yang L, Song Y, Wang L. Multi-emission metal-organic framework composites for multicomponent ratiometric fluorescence sensing: recent developments and future challenges. J Mater Chem B 2021; 8:3292-3315. [PMID: 31829391 DOI: 10.1039/c9tb01931f] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ratiometric fluorescence sensors that are achieved via the ratiometric fluorescence intensity changes of emission peaks based on multi-emission fluorescence probes show a huge advantage. However, the preparation of these multi-emission fluorescence probes is a key challenge, as it is related to having more fluorescence groups with the same excitation but different emission wavelengths, and their assembly is not a simple mixing process. More fluorescent groups or molecules can be assembled into the multi-emission fluorescence probe by covalent bonds and coordination interactions, or by loading in metal-organic frameworks (MOFs). MOFs are excellent candidates for constructing complexes with the capability of multicomponent ratiometric fluorescence sensing, but there are some problems that need to be considered. For example, not all fluorophores can be stably loaded in the MOFs' pores, usually due to the size, surface charge and intrinsic properties of the fluorophore. In turn, it is also related to the structure of the MOF, metal nodes, and properties of the organic ligands. This review first introduces the advantages of the MOF-based multi-component fluorescence sensors, and then discusses the synthesis, classification and application of fluorescent MOFs or MOF composites for multi-component ratiometric fluorescence detection. Particular emphasis is focused on the potential, types and characteristics for sensing and biological applications, and the main challenges and limitations are further explored. This review might be helpful for those researchers interested in the application of multi-component ratiometric fluorescence sensing based on fluorescent MOFs or MOF composites.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | | | | |
Collapse
|
40
|
Duan SL, Zou WK, Guan Y, Lu ZW, Hu MH, Wu YF, Li YQ, Zhang H, Zou P, Wang GT. A water-stable pyridine bisphosphonate-based metal–organic framework as a selective and sensitive luminescent probe for Cr(VI) ions and acetone. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1893312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shao-Long Duan
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Wen-Kang Zou
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu Guan
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Zhi-Wei Lu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Ming-Han Hu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu-Fei Wu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu-Qing Li
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Hui Zhang
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Ping Zou
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Guang-Tu Wang
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| |
Collapse
|
41
|
Li L, Han YF, Zheng ZB, Wang CA, Nie K, Li JK, Zhang RF, Ru J, Ma CL. A luminescent Zn-MOF constructed from l-aspartic acid and 4,4-bipyridine: Selectively and sensitively detect Fe3+ and 2,4,6-trinitrophenol (TNP) in aqueous solution. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
A Cobalt-Organic Framework with Sensitive Detection of Fe3+, Cr2O72–, and CrO42– Ions in Water. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01917-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Qin B, Zhang X, Qiu J, Gahungu G, Yuan H, Zhang J. Water-Robust Zinc–Organic Framework with Mixed Nodes and Its Handy Mixed-Matrix Membrane for Highly Effective Luminescent Detection of Fe3+, CrO42–, and Cr2O72– in Aqueous Solution. Inorg Chem 2021; 60:1716-1725. [DOI: 10.1021/acs.inorgchem.0c03214] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bowen Qin
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoying Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingjing Qiu
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Godefroid Gahungu
- Department of Chemistry, University of Burundi, BP 2700, Bujumbura, Burundi
| | - Haiyan Yuan
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingping Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
44
|
Li J, Zhao YX, Wu Q, Yang H, Lu J, Ma HY, Wang SN, Li YW. A Cd-MOF fluorescence sensor with dual functional sites for efficient detection of metal ions in multifarious water environments. CrystEngComm 2021. [DOI: 10.1039/d1ce01308d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A 2D MOF displays high performance luminescence quenching for detecting Fe3+ and Cu2+ in pure water, actual river water and simulated HEPES with superior low LODs. Multiple experiments and DFT calculations co-verify a weak interaction quenching mechanism.
Collapse
Affiliation(s)
- Jing Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yun-Xiu Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Qian Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| |
Collapse
|
45
|
Zhang H, Ding GY, Cui DX, Yousaf A, Chen L, Wang XL, Shan GG, Sun CY, Su ZM. A fluorescent porous covalent-organic polymer (COP-3) for highly selective and sensitive detection of Fe 3+ in aqueous solution. NEW J CHEM 2021. [DOI: 10.1039/d0nj05698g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel COP exhibits excellent performance in sensing Fe3+ at the ppb level, with high cyclicity and anti-interfere ability.
Collapse
Affiliation(s)
- Han Zhang
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- National & Local United Engineering Laboratory for Power Batteries
| | - Guan-yu Ding
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- National & Local United Engineering Laboratory for Power Batteries
| | - Dong-xu Cui
- National & Local United Engineering Laboratory for Power Batteries
- Key Laboratory of Polyoxometalate Science of Ministry of Education Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Afifa Yousaf
- National & Local United Engineering Laboratory for Power Batteries
- Key Laboratory of Polyoxometalate Science of Ministry of Education Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Li Chen
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- National & Local United Engineering Laboratory for Power Batteries
| | - Xin-Long Wang
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- National & Local United Engineering Laboratory for Power Batteries
| | - Guo-Gang Shan
- National & Local United Engineering Laboratory for Power Batteries
- Key Laboratory of Polyoxometalate Science of Ministry of Education Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Chun-Yi Sun
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- National & Local United Engineering Laboratory for Power Batteries
| | - Zhong-Min Su
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- National & Local United Engineering Laboratory for Power Batteries
| |
Collapse
|
46
|
A multiresponsive luminescent probe of antibiotics, pesticides, Fe3+ and ascorbic acid with a Cadmium(II) metal-organic framework. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Wei W, Zhang K, Wang XT, Du SW. Construction of a highly stable lanthanide metal-organic framework for effective detection of aryl-organophosphorus flame retardants in simulated wastewater and fruit juices. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Bayraktutan T, Gür B, Demirbaş Ü. Detection of Al
3+
and Fe
3+
Ions with
Phthalocyanine‐Merocyanine
540 Dye‐Based
Fluorescence Resonance Energy Transfer. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Bahri Gür
- Department of Biochemistry Iğdır University Iğdır 76000 Turkey
| | - Ümit Demirbaş
- Department of Chemistry Karadeniz Technical University Trabzon 61000 Turkey
| |
Collapse
|
49
|
Razavi SAA, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213299] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Zhao Y, Xu Y, Xu B, Cen P, Song W, Duan L, Liu X. A dual-sensitized luminescent europium(iii) complex as a photoluminescent probe for selectively detecting Fe 3. RSC Adv 2020; 10:24244-24250. [PMID: 35516177 PMCID: PMC9055115 DOI: 10.1039/d0ra03821k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
A new luminescent EuIII complex, namely [Eu2(BTFA)4(OMe)2(dpq)2] (1), in which BTFA = 3-benzoyl-1,1,1-trifluoroacetone and dpq = dipyrido [3,2-d:2',3'-f] quinoxaline, has been designed and synthesized by employing two different ligands as sensitizers. Crystal structure analysis reveals that complex 1 is composed of dinuclear EuIII units crystallized in the monoclinic P1̄ space group. Notably, 1 exhibits high thermal stability up to 270 °C and excellent water stability. The photoluminescence property of the complex is investigated. Further studies show 1 can recognize Fe3+ ions with high selectivity from mixed metal ions in aqueous solution through the luminescence quenching phenomenon. Furthermore, the recyclability and stability of 1 after sensing experiments are observed to be adequate. By virtue of the superior stability, detection efficiency, applicability and reusability, the as-prepared EuIII complex can be a promising fluorescent material for practical sensing.
Collapse
Affiliation(s)
- Yafeng Zhao
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yanhong Xu
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Bing Xu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University Yinchuan 750021 China
| | - Weiming Song
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Lijuan Duan
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiangyu Liu
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210023 China
| |
Collapse
|