1
|
Schallenberg D, Pardemann N, Villinger A, Seidel WW. Synthesis and coordination behaviour of 1 H-1,2,3-triazole-4,5-dithiolates. Dalton Trans 2022; 51:13681-13691. [PMID: 36000523 DOI: 10.1039/d2dt00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparative access to and first group 10 metal complexes of novel 1H-1,2,3-triazole-4,5-dithiolate ligands (tazdt2-) are reported. A set of S-protected 1H-1,2,3-triazole-4,5-dithiol derivatives with R1 = 2,6-dimethylphenyl (Xy) or benzyl (Bn) at N1 and with R2 = Bn or trimethylsilylethyl (TMS-ethyl) at both S atoms were synthesized by a 1,3-dipolar cycloaddition catalysed by either Ru(II) or Cu(I). Extensive investigations on the removal of the protective groups resulted the reductive removal of benzyl groups to be superior in isolating the free 4,5-dithiols of R1N3C2(SH)2 with R1 = Xy (H2-8) or Bn (H2-9). Coordination of these ligands led to the formation of the metal complexes [(η5-C5H5)2Ti(8)], [Ni(dppe)(8)], [Ni(dppe)(9)], [Pd(dppe)(9)] {dppe = bis(diphenylphosphanyl)ethane} and homoleptic (NBu4)n[Ni(8)2] (n = 1, 2). All complexes were fully characterized including structure determination by single crystal XRD. The electronic properties of the Ni and Pd complexes were determined by cyclic voltammetry, UV/vis and EPR spectroscopy supported by DFT calculations. According to the spectral and electrochemical data, the tazdt2- complexes resemble the corresponding benzene-1,2-dithiolate (bdt2-) type compounds reflecting the restricted influence of the electron-withdrawing N3 moiety in the backbone. DSC-TGA measurements with [(η5-C5H5)2Ti(8)] and [Ni(dppe)(8)] indicate a well-defined thermal process involving simultaneous elimination of both N2 and CS.
Collapse
Affiliation(s)
- David Schallenberg
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Nils Pardemann
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. .,Leibniz Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
2
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angew Chem Int Ed Engl 2022; 61:e202201136. [PMID: 35286003 PMCID: PMC9401033 DOI: 10.1002/anie.202201136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Cofactors are required for almost half of all enzyme reactions, but their functions and binding partners are not fully understood even after decades of research. Functionalised cofactor mimics that bind in place of the unmodified cofactor can provide answers, as well as expand the scope of cofactor activity. Through chemical proteomics approaches such as activity-based protein profiling, the interactome and localisation of the native cofactor in its physiological environment can be deciphered and previously uncharacterised proteins annotated. Furthermore, cofactors that supply functional groups to substrate biomolecules can be hijacked by mimics to site-specifically label targets and unravel the complex biology of post-translational protein modification. The diverse activity of cofactors has inspired the design of mimics for use as inhibitors, antibiotic therapeutics, and chemo- and biosensors, and cofactor conjugates have enabled the generation of novel enzymes and artificial DNAzymes.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Martin Pfanzelt
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Stephan A. Sieber
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| |
Collapse
|
3
|
Pätsch S, Correia JV, Elvers BJ, Steuer M, Schulzke C. Inspired by Nature-Functional Analogues of Molybdenum and Tungsten-Dependent Oxidoreductases. Molecules 2022; 27:molecules27123695. [PMID: 35744820 PMCID: PMC9227248 DOI: 10.3390/molecules27123695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Throughout the previous ten years many scientists took inspiration from natural molybdenum and tungsten-dependent oxidoreductases to build functional active site analogues. These studies not only led to an ever more detailed mechanistic understanding of the biological template, but also paved the way to atypical selectivity and activity, such as catalytic hydrogen evolution. This review is aimed at representing the last decade’s progress in the research of and with molybdenum and tungsten functional model compounds. The portrayed systems, organized according to their ability to facilitate typical and artificial enzyme reactions, comprise complexes with non-innocent dithiolene ligands, resembling molybdopterin, as well as entirely non-natural nitrogen, oxygen, and/or sulfur bearing chelating donor ligands. All model compounds receive individual attention, highlighting the specific novelty that each provides for our understanding of the enzymatic mechanisms, such as oxygen atom transfer and proton-coupled electron transfer, or that each presents for exploiting new and useful catalytic capability. Overall, a shift in the application of these model compounds towards uncommon reactions is noted, the latter are comprehensively discussed.
Collapse
|
4
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Funktionalisierte Cofaktor‐Analoga für die Erforschung von Interaktomen und darüber hinaus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Martin Pfanzelt
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Stephan A. Sieber
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| |
Collapse
|
5
|
|
6
|
Henfling S, Kempt R, Klose J, Kuc A, Kersting B, Krautscheid H. Dithiol-Dithione Tautomerism of 2,3-Pyrazinedithiol in the Synthesis of Copper and Silver Coordination Compounds. Inorg Chem 2020; 59:16441-16453. [PMID: 33091305 DOI: 10.1021/acs.inorgchem.0c02203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A promising strategy for new electrically conductive coordination polymers is the combination of d10 metal ions, which tolerate short metal···metal distances, with dithiolene linkers, known for their "non-innocent" redox behavior. This study explores the coordination chemistry of 2,3-pyrazinedithiol (H2pdt) toward Cu+ and Ag+ ions, highlighting similarities and differences. The synthetic approach, starting with the fully protonated ligand, allowed the isolation of a homoleptic bis(dithiolene) complex with formal CuI atoms, [Cu(H2pdt)2]Cl (1). This complex was further transformed to a 1D coordination polymer with short metal···metal distances, 1D[Cu(Hpdt)] (2Cu). The larger Ag+ ion directly built up a very similar coordination polymer, 1D[Ag(Hpdt)] (2Ag), without any appearance of an intermediate metal complex. The coordination polymer 1D[Cu(H2pdt)I] (4), like complex 1, bears fully protonated H2pdt ligands in their dithione form. Upon heating, both compounds underwent auto-oxidation coupled with a dehydrogenation of the ligand to form the open-shell neutral copper(II) complex [Cu(Hpdt)2] (3) and the coordination polymer 1D[Cu2I2(H2pdt)(Hpdt)] (5), respectively. For all presented compounds, crystal structures are discussed in-depth. Furthermore, properties of 1, 3, and those of the three 1D coordination polymers, 2Ag, 2Cu, and 4, were investigated by UV-vis-NIR spectroscopy, cyclic voltammetry, and variable-temperature magnetic susceptibility, and direct current (dc)-conductivity measurements. The experimental results are compared and discussed with the aid of DFT simulations.
Collapse
Affiliation(s)
- Stefan Henfling
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Roman Kempt
- Technische Universität Dresden, Professur für Theoretische Chemie, Bergstrasse 66c, D-01062 Dresden, Germany
| | - Jennifer Klose
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Agnieszka Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, Forschungsstelle Leipzig, Abteilung Reaktiver Transport, Institut für Ressourcenökologie, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Berthold Kersting
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Harald Krautscheid
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
7
|
Ehweiner MA, Wiedemaier F, Belaj F, Mösch-Zanetti NC. Oxygen Atom Transfer Reactivity of Molybdenum(VI) Complexes Employing Pyrimidine- and Pyridine-2-thiolate Ligands. Inorg Chem 2020; 59:14577-14593. [PMID: 32951421 DOI: 10.1021/acs.inorgchem.0c02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Four dioxidomolybdenum(VI) complexes of the general structure [MoO2L2] employing the S,N-bidentate ligands pyrimidine-2-thiolate (PymS, 1), pyridine-2-thiolate (PyS, 2), 4-methylpyridine-2-thiolate (4-MePyS, 3) and 6-methylpyridine-2-thiolate (6-MePyS, 4) were synthesized and characterized by spectroscopic means and single-crystal X-ray diffraction analysis (2-4). Complexes 1-4 were reacted with PPh3 and PMe3, respectively, to investigate their oxygen atom transfer (OAT) reactivity and catalytic applicability. Reduction with PPh3 leads to symmetric molybdenum(V) dimers of the general structure [Mo2O3L4] (6-9). Kinetic studies showed that the OAT from [MoO2L2] to PPh3 is 5 times faster for the PymS system than for the PyS and 4-MePyS systems. The reaction of complexes 1-3 with PMe3 gives stable molybdenum(IV) complexes of the structure [MoOL2(PMe3)2] (10-12), while reduction of [MoO2(6-MePyS)2] (4) yields [MoO(6-MePyS)2(PMe3)] (13) with only one PMe3 coordinated to the metal center. The activity of complexes 1-4 in catalytic OAT reactions involving Me2SO and Ph2SO as oxygen donors and PPh3 as an oxygen acceptor has been investigated to assess the influence of the varied ligand frameworks on the OAT reaction rates. It was found that [MoO2(PymS)2] (1) and [MoO2(6-MePyS)2] (4) are similarly efficient catalysts, while complexes 2 and 3 are only moderately active. In the catalytic oxidation of PMe3 with Me2SO, complex 4 is the only efficient catalyst. Complexes 1-4 were also found to catalytically reduce NO3- with PPh3, although their reactivity is inhibited by further reduced species such as NO, as exemplified by the formation of the nitrosyl complex [Mo(NO)(PymS)3] (14), which was identified by single-crystal X-ray diffraction analysis. Computed ΔG⧧ values for the very first step of the OAT were found to be lower for complexes 1 and 4 than for 2 and 3, explaining the difference in catalytic reactivity between the two pairs and revealing the requirement for an electron-deficient ligand system.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Fabian Wiedemaier
- Institute of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| |
Collapse
|
8
|
A Mixed-Valence Tetra-Nuclear Nickel Dithiolene Complex: Synthesis, Crystal Structure, and the Lability of Its Nickel Sulfur Bonds. INORGANICS 2020. [DOI: 10.3390/inorganics8040027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, by employing a common synthetic protocol, an unusual and unexpected tetra-nuclear nickel dithiolene complex was obtained. The synthesis of the [Ni4(ecpdt)6]2− dianion (ecpdt = (Z)-3-ethoxy-3-oxo-1-phenylprop-1-ene-1,2-bis-thiolate) with two K+ as counter ions was then intentionally reproduced. The formation of this specific complex is attributed to the distinct dithiolene precursor used and the combination with the then coordinated counter ion in the molecular solid-state structure, as determined by X-ray diffraction. K2[Ni4(ecpdt)6] was further characterized by ESI-MS, FT-IR, UV-Vis, and cyclic voltammetry. The tetra-nuclear complex was found to have an uncommon geometry arising from the combination of four nickel centers and six dithiolene ligands. In the center of the arrangement, suspiciously long Ni–S distances were found, suggesting that the tetrameric structure can be easily split into two identical dimeric fragments or two distinct groups of monomeric fragments, for instance, upon dissolving. A proposed variable magnetism in the solid-state and in solution due to the postulated dissociation was confirmed. The Ni–S bonds of the “inner” and “outer” nickel centers differed concurrently with their coordination geometries. This observation also correlates with the fact that the complex bears two anionic charges requiring the four nickel centers to be present in two distinct oxidation states (2 × +2 and 2 × +3), i.e., to be hetero-valent. The different coordination geometries observed, together with the magnetic investigation, allowed the square planar “outer” geometry to be assigned to d8 centers, i.e., Ni2+, while the Ni3+ centers (d7) were in a square pyramidal geometry with longer Ni–S distances due to the increased number of donor atoms and interactions.
Collapse
|