1
|
Damoc M, Tiron V, Tugui C, Varganici CD, Stoica AC, Novitchi G, Dascalu M, Cazacu M. Ferronematic Co(II) Complex: An Active Filler for Magnetically Actuated Soft Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307006. [PMID: 37992252 DOI: 10.1002/smll.202307006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Ferronematics that are generally based on nematic liquid crystals (LCs) doped with magnetic nanoparticles, synergistically taking advantage of the anisotropic and flow characteristics of the nematic host and the magnetic susceptibility of the dopant, have powerful applications as magnetically actuated soft materials. In this work, a Co(II) complex, which alone presents both characteristics, is built with a salen-type ligand 3,5-dichlorosubstituted at the aromatic nuclei and has a tetramethyldisiloxane spacer, which makes it one of the few metallomesogens containing this structural motif. Paramagnetic crystals, through heat treatment above 110 °C, change into magnetic nematic LCs. Applying a perpendicular magnetic field of 50 mT, the nematic droplets align two by two through dipole-dipole interactions. By incorporating it into a silicone matrix consisting mainly of polydimethylsiloxane, a 3D printable ink is formulated and crosslinked under various shapes. In this environment, the cobalt complex is stabilized in an LC state at room temperature and, due to its anisotropy, facilitates the mechanical response to magnetic stimuli. The resulting objects can be easily manipulated on fluid or rough surfaces using external magnetic fields, behave like magnets by themselves, and show reversible locomotion.
Collapse
Affiliation(s)
- Madalin Damoc
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Vasile Tiron
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Blvd. Carol no. 11, Iasi, 700506, Romania
| | - Codrin Tugui
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Cristian-Dragos Varganici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Alexandru-Constantin Stoica
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, CNRS UPR 3228, 25 Rue des Martyrs, Grenoble, 38042, France
| | - Mihaela Dascalu
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Maria Cazacu
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| |
Collapse
|
2
|
Gamage EH, Ribeiro RA, Harmer CP, Canfield PC, Ozarowski A, Kovnir K. Tuning of Cr-Cr Magnetic Exchange through Chalcogenide Linkers in Cr 2 Molecular Dimers. Inorg Chem 2022; 61:6160-6174. [PMID: 35412816 DOI: 10.1021/acs.inorgchem.2c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A set of three Cr-dimer compounds, Cr2Q2(en)4X2 (Q: S, Se; X: Br, Cl; en: ethylenediamine), with monoatomic chalcogenide bridges have been synthesized via a single-step solvothermal route. Chalcogenide linkers mediate magnetic exchange between Cr3+ centers, while bidentate ethylenediamine ligands complete the distorted octahedral coordination of Cr centers. Unlike the compounds previously reported, none of the chalcogenide atoms are connected to extra ligands. Magnetic susceptibility studies indicate antiferromagnetic coupling between Cr3+ centers, which are moderate in Cr2Se2(en)4X2 and stronger in Cr2S2(en)4Cl2. Fitting the magnetic data requires a biquadratic exchange term. High-frequency EPR spectra showing characteristic signals due to coupled S = 1 spin states could be interpreted in terms of the "giant spin" Hamiltonian. A fourth compound, Cr2Se8(en)4, has a single diatomic Se bridge connecting the two Cr3+ centers and shows weak ferromagnetic exchange interactions. This work demonstrates the tunability in strength and type of exchange interactions between metal centers by manipulating the interatomic distances and number of bridging chalcogenide linkers.
Collapse
Affiliation(s)
- Eranga H Gamage
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Raquel A Ribeiro
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Colin P Harmer
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Paul C Canfield
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, 1800 E Paul Dirac Dr, Tallahassee, Florida 32310, United States
| | - Kirill Kovnir
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Kühne IA, Ozarowski A, Sultan A, Esien K, Carter AB, Wix P, Casey A, Heerah-Booluck M, Keene TD, Müller-Bunz H, Felton S, Hill S, Morgan GG. Homochiral Mn 3+ Spin-Crossover Complexes: A Structural and Spectroscopic Study. Inorg Chem 2022; 61:3458-3471. [PMID: 35175771 PMCID: PMC8889584 DOI: 10.1021/acs.inorgchem.1c03379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Structural, magnetic,
and spectroscopic data on a Mn3+ spin-crossover complex
with Schiff base ligand 4-OMe-Sal2323, isolated in crystal
lattices with five different counteranions,
are reported. Complexes of [Mn(4-OMe-Sal2323)]X where X
= ClO4– (1), BF4– (2), NO3– (3), Br– (4), and I– (5) crystallize isotypically in the chiral
orthorhombic space group P21212 with a range of spin state preferences for the [Mn(4-OMe-Sal2323)]+ complex cation over the temperature range
5–300 K. Complexes 1 and 2 are high-spin,
complex 4 undergoes a gradual and complete thermal spin
crossover, while complexes 3 and 5 show
stepped crossovers with different ratios of spin triplet and quintet
forms in the intermediate temperature range. High-field electron paramagnetic
resonance was used to measure the zero-field splitting parameters
associated with the spin triplet and quintet states at temperatures
below 10 K for complexes 4 and 2 with respective
values: DS=1 = +23.38(1) cm–1, ES=1 = +2.79(1) cm–1,
and DS=2 =
+6.9(3) cm–1, with a distribution of E parameters for the S = 2 state. Solid-state circular
dichroism (CD) spectra on high-spin complex 1 at room
temperature reveal a 2:1 ratio of enantiomers in the chiral conglomerate,
and solution CD measurements on the same sample in methanol show that
it is stable toward racemization. Solid-state UV–vis absorption
spectra on high-spin complex 1 and mixed S = 1/S = 2 sample 5 reveal different
intensities at higher energies, in line with the different electronic
composition. The statistical prevalence of homochiral crystallization
of [Mn(4-OMe-Sal2323)]+ in five lattices with
different achiral counterions suggests that the chirality may be directed
by the 4-OMe-Sal2323 ligand. Zero-field
splitting parameters of the spin triplet and
quintet forms of a spin-crossover Mn3+ complex stabilized
in lattices with different counterions are measured by high-field
electron paramagnetic resonance at different frequencies. The homochiral
crystallization of the enantiopure Δ or Λ forms of the
chelate complex, despite the use of achiral anions, is attributed
to the steric influence of the ligand substituent.
Collapse
Affiliation(s)
- Irina A Kühne
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 21, Czech Republic
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Aizuddin Sultan
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Kane Esien
- School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Anthony B Carter
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Paul Wix
- School of Chemistry & CRANN Institute & AMBER Centre, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
| | - Aoife Casey
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | | | - Tony D Keene
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Solveig Felton
- School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Grace G Morgan
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Sundaresan S, Kühne IA, Evesson C, Harris MM, Fitzpatrick AJ, Ahmed A, Müller-Bunz H, Morgan GG. Compressed Jahn-Teller octahedra and spin quintet-triplet switching in coordinatively elastic manganese(III) complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Shova S, Tiron V, Vlad A, Novitchi G, Dumitrescu DG, Damoc M, Zaltariov M, Cazacu M. Permethylated dinuclear Mn(III) coordination nanostructure with stripe‐ordered magnetic domains. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sergiu Shova
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A Iasi 700487 Romania
| | - Vasile Tiron
- Faculty of Physics Alexandru Ioan Cuza University of Iasi Blvd. Carol I no. 11 Iași 700506 Romania
| | - Angelica Vlad
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A Iasi 700487 Romania
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses CNRS UPR 3228 25 Rue des Martyrs Grenoble 38042 France
| | - Dan G. Dumitrescu
- Elettra‐Sincrotrone Trieste S.C.p.A. Strada Statale 14‐km 163,5 in AREA Science Park Trieste Basovizza 34149 Italy
| | - Madalin Damoc
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A Iasi 700487 Romania
| | - Mirela‐Fernanda Zaltariov
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A Iasi 700487 Romania
| | - Maria Cazacu
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A Iasi 700487 Romania
| |
Collapse
|
6
|
Pavlov AA, Nehrkorn J, Zubkevich SV, Fedin MV, Holldack K, Schnegg A, Novikov VV. A Synergy and Struggle of EPR, Magnetometry and NMR: A Case Study of Magnetic Interaction Parameters in a Six-Coordinate Cobalt(II) Complex. Inorg Chem 2020; 59:10746-10755. [DOI: 10.1021/acs.inorgchem.0c01191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alexander A. Pavlov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, Moscow 119991, Russia
- Moscow Institute of Physics and Technology,
Institutskiy per. 9, Dolgoprudny, Moscow 141701, Russia
| | - Joscha Nehrkorn
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
| | | | - Matvey V. Fedin
- International Tomography Center, SB RAS, Institutskaya
3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karsten Holldack
- Helmholtz-Zentrum für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Valentin V. Novikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, Moscow 119991, Russia
- Moscow Institute of Physics and Technology,
Institutskiy per. 9, Dolgoprudny, Moscow 141701, Russia
| |
Collapse
|
7
|
Bikas R, Shahmoradi E, Reinoso S, Emami M, Lezama L, Sanchiz J, Noshiranzadeh N. The effect of the orientation of the Jahn–Teller distortion on the magnetic interactions of trinuclear mixed-valence Mn(ii)/Mn(iii) complexes. Dalton Trans 2019; 48:13799-13812. [DOI: 10.1039/c9dt01652j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The effect of the orientation of the Jahn–Teller distortion on the magnetic interactions in two new mixed-valence trinuclear Mn(iii)–Mn(ii)–Mn(iii) complexes has been investigated.
Collapse
Affiliation(s)
- Rahman Bikas
- Department of Chemistry
- Faculty of Science
- Imam Khomeini International University
- 34148-96818 Qazvin
- Iran
| | - Elaheh Shahmoradi
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- 45371-38791 Zanjan
- Iran
| | - Santiago Reinoso
- Institute for Advanced Materials (InaMat)
- Universidad Pública de Navarra
- 31006 Pamplona
- Spain
| | - Marzieh Emami
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- 45371-38791 Zanjan
- Iran
| | - Luis Lezama
- Departamento de Química Inorgánica
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco UPV/EHU
- 48080 Bilbao
- Spain
| | - Joaquín Sanchiz
- Department of Chemistry
- Faculty of Science
- Instituto de Materiales y Nanotecnología
- University of La Laguna
- 38206 Tenerife
| | - Nader Noshiranzadeh
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- 45371-38791 Zanjan
- Iran
| |
Collapse
|