1
|
Heterometal Grafted Metalla-ynes and Poly(metalla-ynes): A Review on Structure-Property Relationships and Applications. Polymers (Basel) 2021; 13:polym13213654. [PMID: 34771211 PMCID: PMC8588132 DOI: 10.3390/polym13213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Metalla-ynes and poly(metalla-ynes) have emerged as unique molecular scaffolds with fascinating structural features and intriguing photo-luminescence (PL) properties. Their rigid-rod conducting backbone with tunable photo-physical properties has generated immense research interests for the design and development of application-oriented functional materials. Introducing a second d- or f-block metal fragment in the main-chain or side-chain of a metalla-yne and poly(metalla-yne) was found to further modulate the underlying features/properties. This review focuses on the photo-physical properties and opto-electronic (O-E) applications of heterometal grafted metalla-ynes and poly(metalla-ynes).
Collapse
|
2
|
Yao K, Karunanithy G, Howarth A, Holdship P, Thompson AL, Christensen KE, Baldwin AJ, Faulkner S, Farrer NJ. Cell-permeable lanthanide-platinum(IV) anti-cancer prodrugs. Dalton Trans 2021; 50:8761-8767. [PMID: 34080595 PMCID: PMC8237448 DOI: 10.1039/d1dt01688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Platinum compounds are a vital part of our anti-cancer arsenal, and determining the location and speciation of platinum compounds is crucial. We have synthesised a lanthanide complex bearing a salicylic group (Ln = Gd, Eu) which demonstrates excellent cellular accumulation and minimal cytotoxicity. Derivatisation enabled access to bimetallic lanthanide-platinum(ii) and lanthanide-platinum(iv) complexes. Luminescence from the europium-platinum(iv) system was quenched, and reduction to platinum(ii) with ascorbic acid resulted in a "switch-on" luminescence enhancement. We used diffusion-based 1H NMR spectroscopic methods to quantify cellular accumulation. The gadolinium-platinum(ii) and gadolinium-platinum(iv) complexes demonstrated appreciable cytotoxicity. A longer delay following incubation before cytotoxicity was observed for the gadolinium-platinum(iv) compared to the gadolinium-platinum(ii) complex. Functionalisation with octanoate ligands resulted in enhanced cellular accumulation and an even greater latency in cytotoxicity.
Collapse
Affiliation(s)
- Kezi Yao
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Gogulan Karunanithy
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Alison Howarth
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Philip Holdship
- Department of Earth Sciences, University of Oxford, OX1 3AN, UK
| | - Amber L Thompson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | | | - Andrew J Baldwin
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Stephen Faulkner
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Nicola J Farrer
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| |
Collapse
|
3
|
Al-Busaidi IJ, Ilmi R, Dutra JDL, Oliveira WF, Haque A, Al Rasbi NK, Marken F, Raithby PR, Khan MS. Utilization of a Pt(ii) di-yne chromophore incorporating a 2,2'-bipyridine-5,5'-diyl spacer as a chelate to synthesize a green and red emitting d-f-d heterotrinuclear complex. Dalton Trans 2021; 50:1465-1477. [PMID: 33439190 DOI: 10.1039/d0dt04198j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new heterotrinuclear (d-f-d) complex [Eu(btfa)31c] (btfa = 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1c = [(Ph)(Et3P)2Pt-C[triple bond, length as m-dash]C-R-C[triple bond, length as m-dash]C-Pt(Et3P)2(Ph)] (R = 2,2'-bipyridine-5,5'-diyl) has been synthesized by utilizing the N,N-donor sites of the organometallic chromophore. The complex was characterized by analytical and spectroscopic methods. Photophysical properties of the complex were analysed in detail using both steady-state and time-resolved emission and excitation spectroscopy. The optical absorption spectrum of the complex is dominated by the spin allowed π-π* transitions of the btfa and 1c units in the UV-visible region (200-418 nm) and thus is excitable over a wide range of wavelengths across the UV into the visible region of the electromagnetic spectrum. The complex displays typical red Eu(iii) emission when excited at 345 nm. However, it also shows green emission when excited at 464 nm and, thus could be an interesting candidate for full colour display applications. The change in the colour could be a result of the high value of the energy back-transfer rate (6.73 × 105 s-1) from the triplet state of the organometallic chromophore to the 5D1 state of Eu(iii). Judd-Ofelt (J-O) intensity parameters (Ω2 and Ω4), radiative (AR), non-radiative (AR) decay rates and intrinsic quantum yield (Q) have been calculated.
Collapse
Affiliation(s)
| | - Rashid Ilmi
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khoud 123, Oman.
| | - José D L Dutra
- Pople Computational Chemistry Laboratory, Department of Chemistry, UFS, 49100-000 São Cristóvão, Sergipe, Brazil
| | - Willyan F Oliveira
- Pople Computational Chemistry Laboratory, Department of Chemistry, UFS, 49100-000 São Cristóvão, Sergipe, Brazil
| | - Ashanul Haque
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khoud 123, Oman. and Department of Chemistry, College of Science, University of Hail, Ha'il 81451, Kingdom of Saudi Arabia
| | - Nawal K Al Rasbi
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khoud 123, Oman.
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Paul R Raithby
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Muhammad S Khan
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khoud 123, Oman.
| |
Collapse
|