1
|
Bhambri H, Gogia A, Mandal SK. Flexible Linker Spacer Length Modulation in Cd-Based Metal-Organic Frameworks: Impact on Polarity and Sequestration Abilities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409061. [PMID: 40171635 DOI: 10.1002/smll.202409061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/06/2024] [Indexed: 04/04/2025]
Abstract
The heightening concerns over an outbreak of hazardous radioiodine from nuclear waste and carbon dioxide emissions from fossil fuels have restricted access to clean water and air. In this work, three Cd-MOFs (1-3) are self-assembled under environment-friendly conditions using i) a polypyridyl linker spanned by a flexible poly(methylene) spacer, and ii) a bent dicarboxylate linker. With a change in the length of the flexible methylene spacer, the dimensionality of the MOFs is tuned between 3D (1) and 2D (2 and 3). The microscopic images reveal that 1 displays larger particle sizes and a more pronounced morphology compared to 2 and 3. These MOFs show high thermal stability (up to 300 °C) and wettability. A controlled polar feature of 1-3 is utilized to achieve a high uptake capacity of iodine (I2 or I3 -) from water bodies (2.46-2.37 g g-1) and vapor (3.31-2.65 g g-1). With remarkable CO2 uptake by 1-3, the sorbate CO2 is further fixated into market-value products in quantitative conversions and atom economy under room temperature and solvent-free conditions. A comprehensive theoretical support is provided by configurational biased Monte Carlo (CBMC) simulations to reveal the exact locale and binding energies of the sorbates (I2, CO2, and epoxide) toward these MOFs.
Collapse
Affiliation(s)
- Himanshi Bhambri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| | - Alisha Gogia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| |
Collapse
|
2
|
Liang Y, Ning X, Zhen Y. Carboxyethylsilanetriol-Functionalized Al-MIL-53-Supported Palladium Catalyst for Enhancing Suzuki-Miyaura Cross-Coupling Reaction. Molecules 2025; 30:656. [PMID: 39942759 PMCID: PMC11820489 DOI: 10.3390/molecules30030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The application of metal-organic frameworks (MOFs) has attracted increasing attention in organic synthesis. The modification of MOFs can efficiently tailor the structure and improve the property for meeting ongoing demand in various applications, such as the alteration of gas adsorption and separation, catalytic activity, stability, and sustainability or reusability. In this study, carboxyethylsilanetriol (CEST) disodium salt was used as a dual-functional ligand for modified Al-MIL-53 to fabricate CEST-functionalized Al-MIL-53 samples through a hydrothermal reaction of aluminum nitrate, terephthalic acid, and CEST disodium salt by varying the molar ratio of CEST to terephthalic acid and keeping a constant molar ratio of Al3+/-COOH of 1:1. The structure, composition, morphology, pore feature, and stability were characterized by XRD, different spectroscopies, electron microscopy, N2 physisorption, and thermogravimetric analysis. With increasing CEST content, CEST-Al-MIL-53 still preserves an Al-MIL-53-like structure, but the microstructure changed compared with pure Al-MIL-53 due to the integration of CEST. Such a CEST-Al-MIL-53 was used as the support to load Pd particles and afford a catalyst Pd/CEST-Al-MIL-53 for Suzuki-Miyaura C-C cross-coupling reaction of aryl halides and phenylboronic acid under basic conditions. The resulting Pd/CEST-Al-MIL-53 showed a high catalytic activity compared with Pd/Al-MIL-53, due to the nanofibrous structure of silicon species-integrated CEST-Al-MIL-53. The nanofiber microstructure undergoes a remarkable transformation into intricate 3D cross-networks during catalytic reaction, which enables the leachable Pd particles to orientally redeposit and inlay into these networks as the monodisperse spheres and thereby effectively preventing Pd particles from aggregation and leaching, therefore demonstrating a high catalytic performance, long-term stability, and enhanced reusability. Obviously, the integration of CEST into MOFs can effectively prevent the leaching of active Pd species and ensure the re-deposition during catalysis. Moreover, catalytic performance strongly depended on catalyst dosage, temperature, time, solvent, and the type of the substituted group on benzene ring. This work further extends the catalytic application of hybrid metal-organic frameworks.
Collapse
Affiliation(s)
- Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | |
Collapse
|
3
|
Rao RS, Bashri M, Mohideen MIH, Yildiz I, Shetty D, Shaya J. Recent advances in heterogeneous porous Metal-Organic Framework catalysis for Suzuki-Miyaura cross-couplings. Heliyon 2024; 10:e40571. [PMID: 39687170 PMCID: PMC11647841 DOI: 10.1016/j.heliyon.2024.e40571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Suzuki-Miyaura coupling (SMC), a crucial C-C cross-coupling reaction, is still associated with challenges such as high synthetic costs, intricate work-ups, and contamination with homogeneous metal catalysts. Research intensely focuses on strategies to convert homogeneous soluble metal catalysts into insoluble powder solids, promoting heterogeneous catalysis for easy recovery and reuse as well as for exploring greener reaction protocols. Metal-Organic Frameworks (MOFs), recognized for their high surface area, porosity, and presence of transition metals, are increasingly studied for developing heterogeneous SMC. The molecular fence effect, attributed to MOF surface functionalization, helps preventing catalyst deactivation by aggregation, migration, and leaching during catalysis. Recent reports demonstrate the enhanced catalytic activity, selectivity, stability, application scopes, and potential of MOFs in developing greener heterogeneous synthetic methodologies. This review focuses on the catalytic applications of MOFs in SMC reactions, emphasizing developments after 2016. It critically examines the synthesis and incorporation of active metal species into MOFs, focusing on morphology, crystallinity, and dimensionality for catalytic activity induction. MOF catalysts are categorized based on their metal nodes in subsections, with comprehensive discussion on Pd incorporation strategies, catalyst structures, optimal SMC conditions, and application scopes, concluding with insights into challenges and future research directions in this important emerging area of MOF applications.
Collapse
Affiliation(s)
- Ravulakollu Srinivasa Rao
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mahira Bashri
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mohamed Infas Haja Mohideen
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Ibrahim Yildiz
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Functional Biomaterials Group, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Janah Shaya
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| |
Collapse
|
4
|
Obeso JL, Flores JG, Flores CV, López-Cervantes VB, Martínez-Jiménez V, de Los Reyes JA, Lima E, Solis-Ibarra D, Ibarra IA, Leyva C, Peralta RA. SU-101: a Bi(III)-based metal-organic framework as an efficient heterogeneous catalyst for the CO 2 cycloaddition reaction. Dalton Trans 2023; 52:12490-12495. [PMID: 37602766 DOI: 10.1039/d3dt01743e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A non-porous version of SU-101 (herein n-SU-101) was evaluated for the CO2 cycloaddition reaction. The findings revealed that open metal sites (Bi3+) are necessary for the reaction. n-SU-101 displays a high styrene oxide conversion of 96.6% under mild conditions (3 bar and 80 °C). The catalytic activity of n-SU-101 demonstrated its potential application for the cycloaddition of CO2 using styrene oxide.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
- Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, 02200, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Valeria B López-Cervantes
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - V Martínez-Jiménez
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| |
Collapse
|
5
|
Analogize of metal-organic frameworks (MOFs) adsorbents functional sites for Hg2+ ions removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Wang J, Lee SA, Jang HW, Shokouhimehr M. Emerging Two-Dimensional-Based Nanostructured Catalysts: Applications in Sustainable Organic Transformations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9064-9072. [PMID: 35857887 DOI: 10.1021/acs.langmuir.2c01442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extension of green and sustainable materials in the preparation of heterogeneous catalysts for organic transformations has increased over the past few decades. Because of their unique and intriguing physical and chemical properties, two-dimensional (2D) nanostructured materials have attracted widespread attention and have been used in a variety of applications, such as catalysis, electronics, and energy storage. A promising pathway to enhance the performance of 2D nanomaterials is their coupling with other functional materials to form heterogeneous or hybrid structures. Herein, we discuss the use of 2D-based nanostructured catalysts for enhancing organic transformations and highlight selected examples to demonstrate the synthesis, advantages, challenges, efficiency, and reusability of the introduced heterogeneous catalysts for cross-coupling and reduction reactions.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sol A Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Lawrence AS, Martin N, Sivakumar B, Cirujano FG, Dhakshinamoorthy A. Palladium‐Based Metal Organic Frameworks as Heterogeneous Catalysts for C‐C Couplings. ChemCatChem 2022. [DOI: 10.1002/cctc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nuria Martin
- Universidad de Valencia: Universitat de Valencia Chemistry SPAIN
| | | | | | - Amarajothi Dhakshinamoorthy
- Maduarai University School of Chemistry Palkalai NagarPalkalai NagarMadurai Kamaraj University 625 021 Madurai INDIA
| |
Collapse
|
8
|
Alsalahi W, Augustyniak AW, Tylus W, Trzeciak AM. New Palladium - ZrO 2 Nano-Architectures from Thermal Transformation of UiO-66-NH 2 for Carbonylative Suzuki and Hydrogenation Reactions. Chemistry 2021; 28:e202103538. [PMID: 34850478 DOI: 10.1002/chem.202103538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Indexed: 12/15/2022]
Abstract
The new nanocomposites, Pd/C/ZrO2 , PdO/ZrO2, and Pd/PdO/ZrO2 , were prepared by thermal conversion of Pd@UiO-66-Zr-NH2 (MOF) in nitrogen or air atmosphere. The presence of Pd nanoparticles, uniformly distributed on the ZrO2 or C/ZrO2 matrix, was evidenced by transmission electron microscopy, scanning electron microscopy (SEM), Raman and X-ray Photoelectron Spectroscopy (XPS) methods. All pyrolysed composites retained the shape of the MOF template. They catalyze carbonylative Suzuki coupling under 1 atm CO with an efficiency significantly higher than the original Pd@UiO-66-Zr-NH2 . The most active PdO/ZrO2 composite, formed benzophenone with TOF up to 1600 h-1 , while by using Pd@UiO-66-Zr-NH2 , much lower TOF values, 51-95 h-1 , were achieved. After the reaction, PdO/ZrO2 was recovered with the same composition and catalytic activity. Very good results were also obtained in the transfer hydrogenation of benzophenones to alcohols with Pd/C/ZrO2 and PdO/ZrO2 catalysts under microwave irradiation.
Collapse
Affiliation(s)
- Waleed Alsalahi
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| | - Adam W Augustyniak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| | - Włodzimierz Tylus
- Department of Advanced Material Technologies Faculty of Chemistry, Wrocław University Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna M Trzeciak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| |
Collapse
|
9
|
Liu GZ, Ma LP, Jia R. Crystal structure of the coordination polymer catena-poly[(1,2-di(pyridin-4-yl)ethane-κN)-(μ2-2-nitroisophthalato-κ2O:O′)zinc(II)], C20H17N3O7Zn. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC20H17N3O7Zn, monoclinic, P21/n (no. 14), a = 10.4368(3) Å, b = 15.1527(5) Å, c = 12.9007(3) Å, β = 101.900(3)°, V = 1996.36(10) Å3, Z = 4, Rgt(F) = 0.0410, wRref(F2) = 0.0898, T = 293(2) K.
Collapse
Affiliation(s)
- Guang-Zhen Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, LuoYang Normal University, Luoyang, Henan 471934, P.R. China
| | - Lu-Ping Ma
- College of Chemistry and Chemical Engineering, LuoYang Normal University, Luoyang, Henan 471934, P.R. China
| | - Ru Jia
- College of Chemistry and Chemical Engineering, LuoYang Normal University, Luoyang, Henan 471934, P.R. China
| |
Collapse
|