1
|
Lu GL, Chiu ST, Lin PH, Long J. Modulating magnetic anisotropy in linear tetranuclear dysprosium(III) complexes via coordinated anions. Dalton Trans 2024; 53:18575-18584. [PMID: 39470254 DOI: 10.1039/d4dt01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report the synthesis, structures, and magnetic properties of two novel linear tetranuclear complexes with the general formula [Dy4(Hheb)2(heb)4X2(MeOH)4] (X- = NO3-, OAc-; H2heb = (E)-N'-(1-(2-hydroxyphenyl)ethylidene)benzohydrazide, OAc- = acetate). The rigid ligands (Hheb-/heb2-) incorporate phenoxide groups and bridge the Dy3+ ions in an unusual tetranuclear linear assembly. Notably, we demonstrate through magnetic measurements and theoretical calculations how the anion (X) coordinated at the peripheral Dy3+ centers acts as a switch, significantly changing the magnetic anisotropy of the entire complex. This control over magnetic anisotropy through the selection of the coordinated anion offers a promising avenue for tailoring the functionality of single-molecule magnets.
Collapse
Affiliation(s)
- Guan-Lin Lu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Shih-Ting Chiu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Po-Heng Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
2
|
Li B, Shi W, Du J, Zhang Y, Zhang H, Yang H, Sun L, Zhang Y, Li M. Structures and Single-Molecule Magnet Behavior of Dy 3 and Dy 4 Clusters Constructed by Different Dysprosium(III) Salts. Inorg Chem 2024; 63:15667-15678. [PMID: 39099326 DOI: 10.1021/acs.inorgchem.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Using the Schiff base ligand H2L-pyra (N'-(2-hydroxybenzoyl)pyrazine-2-carbohydrazonamide) with multiple dentate sites, the trinuclear DyIII-based complex [Dy3(HL-pyra)2(L-pyra)2(CH3COO)3]·2H2O (1) was synthesized. By analyzing the fragmented assembly process and fine-tuning the bridging anions, complex [Dy4(HL-pyra)2(L-pyra)4(NO3)2(H2O)2]·8H2O (2) with different nuclear numbers was successfully synthesized. Magnetic studies demonstrated that 1 did not exhibit magnetic relaxation behavior under the external field; however, 2 exhibited zero-field single-molecule magnetic relaxation behavior with an effective energy barrier (Ueff) of 197.44 K. This is attributed to the improved anisotropy of the single ion after the normalization of the crystal structure, thus realizing the molecular magnetic switching. Moreover, magnetic dilution analysis of 2 demonstrated that the weak magnetic interaction between metal ions inhibited the occurrence of quantum tunneling of magnetization (QTM), resulting in high-performance single-molecule magnet (SMM) behavior. The reasons for the magnetic difference between these two complexes were analyzed using ab initio calculation and magneto-structural correlations. This study provides a reasonable prediction of the ideal configuration of the approximately parallelogram DyIII-based SMMs, thus offering an effective approach for synthesizing Dy4 complexes with excellent properties.
Collapse
Affiliation(s)
- Botan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Wandi Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiyuan Du
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yiyi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Haibo Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hengyu Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yiquan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
- Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| |
Collapse
|
3
|
Mandal S, Pramanik A, Dey S, Carrella LM, Rajaraman G, Rentschler E, Mohanta S. Experimental and theoretical investigations on three Dy III4 single molecule magnets: structural and magneto-structural correlations. Dalton Trans 2022; 51:14753-14766. [PMID: 36106563 DOI: 10.1039/d2dt02348b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The work in this report describes the syntheses, crystal structures, dc/ac magnetic behaviour, and theoretical calculations (both ab initio CASSCF and DFT) of three defect dicubane/planar butterfly type tetradysprosium(III) compounds of compositions [DyIII4L4(μ3-OH)2(carboxylate)2(dmf)2] (carboxylate = formate (1), acetate (2), propionate (3)), where H2L = 2-(2-hydroxy-3-ethoxybenzylideneamino)phenol. In the butterfly type structures, two DyIII centres (Dyb) occupy the body positions while two other (Dyw) units occupy the wing positions. SHAPE analyses reveal that the coordination geometries of the Dyb and Dyw centres, both octacoordinated, are triangular dodecahedron (TDD) and square antiprism (SAPR), respectively. Variable-temperature magnetic susceptibility measurements give an indication of weak antiferromagnetic interactions and variable-field magnetization measurements reveal strong anisotropy in all the three compounds. The variable-temperature/frequency in-phase/out-of-phase AC susceptibility data reveal that all these three compounds are SMMs with two relaxation channels under zero dc field; slow relaxation (SR) and fast relaxation (FR) processes could be assigned to the SAPR (Dyw) and TDD (Dyb) metal centres, respectively. The simulated Ueff and τ0 values are: 49.0 cm-1 and 1.76 × 10-7 s for 1, 30.3 cm-1 and 1.51 × 10-8 s for 2 and 23.4 cm-1 and 9.64 × 10-7 s for 3. Furthermore, ab initio CASSCF/RASSI-SO/SINGLE_ANISO calculations reveal that the ground state of DyIII centres are axial in nature with a dominating contribution from mJ = |±15/2>. The magnetization relaxation occurs via the first excited KD resulting in the large computed blocking barrier of Dyw (SAPR) centres compared to that of the Dyb (TDD) centres which corroborates the experimental measurements. The exchange parameters obtained from DFT calculations are generally in line with those obtained from the fitting of χMT vs. T in POLY_ANISO calculations. Interesting structural and magneto-structural correlations have been found, which are the major outcomes of this investigation.
Collapse
Affiliation(s)
- Shuvankar Mandal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| | - Abhishek Pramanik
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Luca M Carrella
- Department of Chemistry, Johannes-Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Eva Rentschler
- Department of Chemistry, Johannes-Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Sasankasekhar Mohanta
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| |
Collapse
|
4
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. The first exploration of coordination chemistry using a methyl substituted o-vanillin based ligand: an example starting with Dy 4/Zn 2Dy 2 systems displaying slow relaxation of magnetization. NEW J CHEM 2022. [DOI: 10.1039/d1nj05717k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two butterfly-shaped Dy4 and Zn2Dy2 complexes displaying slow relaxation of magnetization have been synthesized from a new methyl substituted o-vanillin based ligand, enlarging the scope for finding better SMMs.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
5
|
Zhang YM, Zheng FW, Chen HT, Li DJ, Han FJ, Yang L. Structure and Magnetic Properties of Tetranuclear Dysprosium Cluster Based on 2,6-bis(2-((E)-(8-Hydroxyquinolin-2-yl)methylene)hydrazine-1-carbonyl)pyridine 1-oxide. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Su SD, Li JX, Xu F, Wang CX, Wang K, Li Y, Zhang SH, Zhang XQ, Zhang YQ, Liang FP. Dy III single-molecule magnets from ligands incorporating both amine and acylhydrazine Schiff base groups: the centrosymmetric {Dy 2} displaying dual magnetic relaxation behaviors. Dalton Trans 2020; 49:15739-15749. [PMID: 33146181 DOI: 10.1039/c9dt04434e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The novel multidentate chelating ligands N'-(2-pyridylmethylidene)-2-(2-pyridylmethylideneamino)benzohydrazide (Hpphz) and N'-(2-salicylmethylidene)-2-(2-salicylmethylideneamino)benzohydrazide (H3sshz), which incorporate both amine and acylhydrazine Schiff base groups, were synthesized and investigated in DyIII coordination chemistry. The reactions of Hpphz and Dy(OAc)3·4H2O have yielded two {Dy2} featuring double OAc- bridges: [Dy2(H2aphz)2(OAc)4(ROH)2] [R = Me (1) and Et (2)], where the Hpphz ligands were in situ hydrolyzed into 2-amino-(2-pyridylmethylideneamino)benzohydrazide ions (H2aphz-). Besides, the reaction between H3sshz and Dy(NO)3·6H2O afforded a [Dy6(sshz)4(μ3-OH)4(μ4-O)(MeOH)4]2·17.5MeOH·2H2O cluster (3). This cluster contained two discrete {Dy6} cores, each of which consisted of a pair of {Dy3} triangular units. All the complexes displayed a single relaxation process of single-molecule magnet (SMM) behaviors under a zero dc field. Both 1 and 2 showed field-induced dual magnetic-relaxation behaviors. However, their diluted samples (1@Y and 2@Y) only showed one-step relaxation behaviors whether under a zero or applied dc field, indicating that the dual magnetic-relaxation behaviors of 1 and 2 were absent after the dilution. Combined with ab initio calculations, it could be infered that the dual magnetic-relaxation behaviors of 1 and 2 might be ascribled to the joint contributions of the single ion anisotropy and magnetic interactions. Examples of this type are rather rare in previous studies. Ab initio calculations also suggested that the discrepancy between the relaxation processes of 1 and 2 may be caused by the small difference between their magnetic interactions.
Collapse
Affiliation(s)
- Sen-Da Su
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang L, Yang P, Li L, Hu Y, Gao Y, Tao J. A series of Salen‐type homodinuclear lanthanide complexes and their slow magnetic relaxation in Dy
2
and Ho
2. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lun Zhang
- College of Chemistry and Materials ScienceHuaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Pei‐Pei Yang
- College of Chemistry and Materials ScienceHuaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
- Anhui Key Laboratory of Energetic MaterialsHuaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Ling‐Fei Li
- College of Chemistry and Materials ScienceHuaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Yi‐Ye Hu
- College of Chemistry and Materials ScienceHuaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Yu Gao
- College of Chemistry and Materials ScienceHuaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Jin Tao
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and TechnologyNanjing Normal University Nanjing 210023 People's Republic of China
| |
Collapse
|
8
|
Li L, Gou J, Wu DF, Wang YJ, Duan YY, Chen HH, Gao HL, Cui JZ. Near-infrared luminescence and magnetic properties of dinuclear rare earth complexes modulated by β-diketone co-ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj00164c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The magnetic properties of complexes based on a Schiff base ligand H2L can be modulated by subtle changes in the coordination environment resulting from changes in the co-ligand substituents.
Collapse
Affiliation(s)
- Ling Li
- Department of Chemistry
- Tianjin University
- Tianjin
- China
| | - Jian Gou
- Department of Chemistry
- Tianjin University
- Tianjin
- China
| | - Dong-Fang Wu
- Department of Chemistry
- Tianjin University
- Tianjin
- China
| | - Yun-Juan Wang
- Department of Chemistry
- Tianjin University
- Tianjin
- China
| | - Yao-Yao Duan
- Department of Chemistry
- Tianjin University
- Tianjin
- China
| | | | - Hong-Ling Gao
- Department of Chemistry
- Tianjin University
- Tianjin
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| | - Jian-Zhong Cui
- Department of Chemistry
- Tianjin University
- Tianjin
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| |
Collapse
|
9
|
Biswas S, Kumar P, Swain A, Gupta T, Kalita P, Kundu S, Rajaraman G, Chandrasekhar V. Phosphonate-assisted tetranuclear lanthanide assemblies: observation of the toroidic ground state in the Tb III analogue. Dalton Trans 2019; 48:6421-6434. [PMID: 30993275 DOI: 10.1039/c9dt00592g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of LnCl3·6H2O with a multidentate flexible Schiff base ligand (LH4), H2O3PtBu and trifluoroacetic acid (tfaH) afforded a series of homometallic tetranuclear complexes, [Ln4(LH2)2(O3PtBu)2(μ2-η1η1tfa)2][2Cl] (Ln = DyIII (1), TbIII (2) and GdIII (3)). The tetranuclear lanthanide core contains two structurally different lanthanide centres, one being in a distorted trigonal dodecahedron geometry and the other in a distorted trigonal prism. Complexes 1-3 were investigated via direct and alternating current (DC and AC) magnetic susceptibility measurements. Only 1 revealed a weak single-molecule magnet (SMM) behaviour. Alternating current (ac) magnetic susceptibility measurements on 1 reveal a frequency-dependent out-of-phase signal. However, the absence of distinct maxima in the χ'' peak (within the temperature/frequency range of our experiments) prevented deduction of the experimental energy barrier for magnetization reversal (Ueff) and the relaxation time. We have carried out extensive ab initio (CASSCF + RASSI-SO + SINGLE_ANISO + POLY_ANISO) calculations on complexes 1-2 to gain deeper insights into the nature of magnetic anisotropy. Our calculations yielded only one exchange coupling parameter between the two LnIII centres bridged by the ligand (neglecting the exchange between the LnIII centres that are not proximal wrt each other). All the extracted J values indicate a weakly antiferromagnetic coupling between the metal centres (J = -0.025 cm-1 for 1 and J = -0.015 cm-1 for 2). Calculated exchange coupled Ucal values of ∼5 and ∼1 cm-1 in 1 and 2 respectively nicely corroborated the experimental observations regarding weak and no SMM characteristics. Our calculations indicated the presence of a net single-molecule toroidal (SMT) behaviour in complex 2. On the other hand, fitting the magnetic data (susceptibility and magnetization) in the isotropic cluster 3 revealed weak AFM exchange couplings of J1 = 0.025 cm-1 and J2 = -0.020 cm-1 which are consistent with those for GdIII ions.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Geo-Chemistry, Keshav Deva Malaviya Institute of Petroleum Exploration, Dehradun-248915, India
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang K, Li GP, Zhang C, Wang YY. Dramatic impact of auxiliary ligands on the two-step magnetic relaxation process in Dy 4(iii) single-molecule magnets. Dalton Trans 2019; 48:5793-5799. [PMID: 30977505 DOI: 10.1039/c9dt01076a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To better understand the factors determining the multi-step relaxation processes in polynuclear lanthanide single molecule magnets (SMMs), two Dy(iii)4 SMMs showing two-step relaxation processes were elaborately designed and investigated for their structure-dependent magnetic properties. Through targetedly fine-tuning the auxiliary ligand (from the anion of 1-phenylbutane-1,3-dione to 2-acetylcyclopentanone) on specific Dy(iii) sites while retaining the same type of coordination atoms, one of the two relaxation processes shifted to higher temperature with an increase of energy barrier, which permits the unambiguous assignment of the relaxation processes to specific metal sites. Therefore, the present {Dy4} systems provide a good example to probe the factors determining the relaxation dynamics, and point to a simple way to optimize the magnetic performance of polynuclear dysprosium SMMs.
Collapse
Affiliation(s)
- Kun Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, P.R. China.
| | | | | | | |
Collapse
|
11
|
Ke H, Wei W, Yang Y, Zhang J, Zhang YQ, Xie G, Chen S. Effect of coordination anion substitutions on relaxation dynamics of defect dicubane Zn2Dy2 tetranuclear clusters. Dalton Trans 2019; 48:7844-7852. [DOI: 10.1039/c9dt01074b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We showcase the coordination anion substitution effect on the relaxation dynamics of defect dicubane Zn2Dy2 tetranuclear clusters.
Collapse
Affiliation(s)
- Hongshan Ke
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Wen Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yongsheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering
- Anhui Jianzhu University
- Hefei
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|
12
|
Bikas R, Shahmoradi E, Reinoso S, Emami M, Lezama L, Sanchiz J, Noshiranzadeh N. The effect of the orientation of the Jahn–Teller distortion on the magnetic interactions of trinuclear mixed-valence Mn(ii)/Mn(iii) complexes. Dalton Trans 2019; 48:13799-13812. [DOI: 10.1039/c9dt01652j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The effect of the orientation of the Jahn–Teller distortion on the magnetic interactions in two new mixed-valence trinuclear Mn(iii)–Mn(ii)–Mn(iii) complexes has been investigated.
Collapse
Affiliation(s)
- Rahman Bikas
- Department of Chemistry
- Faculty of Science
- Imam Khomeini International University
- 34148-96818 Qazvin
- Iran
| | - Elaheh Shahmoradi
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- 45371-38791 Zanjan
- Iran
| | - Santiago Reinoso
- Institute for Advanced Materials (InaMat)
- Universidad Pública de Navarra
- 31006 Pamplona
- Spain
| | - Marzieh Emami
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- 45371-38791 Zanjan
- Iran
| | - Luis Lezama
- Departamento de Química Inorgánica
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco UPV/EHU
- 48080 Bilbao
- Spain
| | - Joaquín Sanchiz
- Department of Chemistry
- Faculty of Science
- Instituto de Materiales y Nanotecnología
- University of La Laguna
- 38206 Tenerife
| | - Nader Noshiranzadeh
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- 45371-38791 Zanjan
- Iran
| |
Collapse
|
13
|
Wang WM, He LY, Wang XX, Shi Y, Wu ZL, Cui JZ. Linear-shaped LnIII4 and LnIII6 clusters constructed by a polydentate Schiff base ligand and a β-diketone co-ligand: structures, fluorescence properties, magnetic refrigeration and single-molecule magnet behavior. Dalton Trans 2019; 48:16744-16755. [DOI: 10.1039/c9dt03478a] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of linear-shaped LnIII4 and LnIII6 clusters were synthesized. The structures, fluorescence properties and magnetic properties have been deeply studied.
Collapse
Affiliation(s)
- Wen-Min Wang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
- Department of Chemistry
| | - Li-Yuan He
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Xin-Xin Wang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Ying Shi
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Zhi-Lei Wu
- Department of Chemistry
- Tianjin University
- Tianjin
- China
| | | |
Collapse
|
14
|
Huang Y, Qin Y, Ge Y, Cui Y, Zhang X, Li Y, Yao J. Rationally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42− and Cr2O72−. NEW J CHEM 2019. [DOI: 10.1039/c9nj04893f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The utilization of a Schiff base ligand 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol (H2L) afforded five nonanuclear lanthanide(iii) clusters. Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42− and Cr2O72−.
Collapse
Affiliation(s)
- Yuan Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yaru Qin
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yu Ge
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yanfeng Cui
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Xiamei Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yahong Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Jinlei Yao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application
- School of Mathematics and Physics
- Suzhou University of Science and Technology
- Suzhou
- China
| |
Collapse
|
15
|
Wang WM, Zhang L, Li XZ, He LY, Wang XX, Shi Y, Wang J, Dong J, Wu ZL. Structures, fluorescence properties and magnetic properties of a series of rhombus-shaped LnIII4 clusters: magnetocaloric effect and single-molecule-magnet behavior. NEW J CHEM 2019. [DOI: 10.1039/c9nj02872b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family LnIII4 clusters were successfully synthesized and structurally characterized. Magnetic studies show that Gd4 cluster displays magnetic refrigeration, while Dy4 cluster demonstrates two distinct slow magnetic relaxation processes.
Collapse
Affiliation(s)
- Wen-Min Wang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| | - Li Zhang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Xian-Zhen Li
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Li-Yuan He
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Xin-Xin Wang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Ying Shi
- Department of Biology
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Jie Wang
- Department of Biology
- Taiyuan Normal University
- Jinzhong 030619
- China
| | - Jie Dong
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- China
- Department of Chemistry
| | - Zhi-Lei Wu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|