1
|
Zafar M, Subramaniyan V, Tibika F, Tulchinsky Y. Cationic ligands - from monodentate to pincer systems. Chem Commun (Camb) 2024; 60:9871-9906. [PMID: 38920056 DOI: 10.1039/d4cc01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
For a long time, the small group of cationic ligands stood out as obscure systems within the general landscape of coordinative chemistry. However, this situation has started to change rapidly during the last decade, with more and more examples of metal-coordinated cationic species being reported. The growing interest in these systems is not only of purely academic nature, but also driven by accumulating evidence of their high catalytic utility. Overcoming the inherently poor coordinating ability of cationic species often required additional structural stabilization. In numerous cases this was realized by functionalizing them with a pair of chelating side-arms, effectively constructing a pincer-type scaffold. This comprehensive review aims to encompass all cationic ligands possessing such pincer architecture reported to date. Herein every cationic species that has ever been embedded in a pincer framework is described in terms of its electronic structure, followed by an in-depth discussion of its donor/acceptor properties, based on computational studies (DFT) and available experimental data (IR, NMR or CV). We then elaborate on how the positive charge of these ligands affects the spectroscopic and redox properties, as well as the reactivity, of their complexes, compared to those of the structurally related neutral ligands. Among other systems discussed, this review also surveys our own contribution to this field, namely, the introduction of sulfonium-based pincer ligands and their complexes, recently reported by our group.
Collapse
Affiliation(s)
- Mohammad Zafar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
2
|
Saha S, Krause JA, Guan H. C(sp)-H, S-H, and Sn-H Bond Activation with a Cobalt(I) Pincer Complex. Inorg Chem 2024; 63:13689-13699. [PMID: 38976491 DOI: 10.1021/acs.inorgchem.4c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This study focuses on the stoichiometric reactions of {2,6-(iPr2PO)2C6H3}Co(PMe3)2 with terminal alkynes, thiols, and tin hydrides as part of an effort to develop catalytic, two-electron processes with cobalt. This specific Co(I) pincer complex proves to be effective for cleaving the C(sp)-H, S-H, and Sn-H bonds to give oxidative addition products with the general formula {2,6-(iPr2PO)2C6H3}CoHX(PMe3) (X = alkynyl, thiolate, and stannyl groups) along with the free PMe3. These reactions typically reach completion when the substituents on acetylene, sulfur, and tin are electron-withdrawing groups (e.g., phenyl, pyridyl, and alkenyl groups). In contrast, alkyl-substituted acetylenes, 1-pentanethiol, and tributyltin hydride are partially converted due to the equilibria with the corresponding oxidative addition products. The Co(I) pincer complex is not a hydrothiolation catalyst but capable of catalyzing the hydrostannation of terminal alkynes with Ph3SnH to produce β-(Z)-alkenylstannanes selectively.
Collapse
Affiliation(s)
- Sayantani Saha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
3
|
Oliemuller LK, Moore CE, Thomas CM. Synthesis, Characterization, and Reactivity of a (PPP) Pincer-Ligated Manganese Carbonyl Complex: Polarity Reversal Imparted by the Electrophilic Nature of a Planar Mn-P(NR 2) 2 Fragment. Inorg Chem 2023; 62:13997-14009. [PMID: 37585359 DOI: 10.1021/acs.inorgchem.3c01988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The bonding interactions of a synthesized pincer-ligated manganese dicarbonyl complex featuring an N-heterocyclic phosphenium (NHP+) central moiety are explored. The pincer ligand [PPP]Cl was coordinated to a manganese center using Mn(CO)5Br and 254 nm light to afford the chlorophosphine complex (PPClP)Mn(CO)2Br (2) as a mixture of halide exchange products and stereoisomers. The target dicarbonyl species (PPP)Mn(CO)2 (3) was prepared by treatment of 2 with 2 equiv of the reductant KC8. Computational investigations and analysis of structural parameters were used to elucidate multiple bonding interactions between the Mn center and the PNHP atom in 3. The generation of a product of formal H2 addition, (PPHP)Mn(CO)2H (4), was achieved through the dehydrogenation of NH3BH3, affording a 2:1 mixture of 4syn:4anti stereoisomers. The nucleophilic nature of the Mn center and the electrophilic nature of the PNHP moiety were demonstrated through hydride addition and protonation of 3 to produce K(THF)2[(PPHP)Mn(CO)2] (6) and (PPClP)Mn(CO)2H (5), respectively. The observed reactivity suggests that 3 is best described as a Mn-I/NHP+ complex, in contrast to pincer-ligated dicarbonyl manganese analogues typically assigned as MnI species.
Collapse
Affiliation(s)
- Leah K Oliemuller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Lee K, Kim N, Cho KB, Lee Y. Electronic Effect on Phenoxide Migration at a Nickel(II) Center Supported by a Tridentate Bis(phosphinophenyl)phosphido Ligand. Inorg Chem 2023; 62:3007-3017. [PMID: 36753609 DOI: 10.1021/acs.inorgchem.2c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A phosphide nickel(II) phenoxide pincer complex (2) reacts with CO(g) to give a pseudo-tetrahedral nickel(0) monocarbonyl complex (3) possessing a phosphinite moiety. This metal-ligand cooperative (MLC) transformation occurs with a (PPP)Ni scaffold (PPP- = P[2-PiPr2-C6H4]2-), which can accommodate both square planar and tetrahedral geometries. The 2-electron reduction of a nickel(II) species induced by CO coordination involves group transfer to generate a P-O bond. For better mechanistic understanding, a series of nickel(II) phenolate complexes (2a-2e, XC6H4O- (X = OMe, Me, H, and CF3) and pentafluorophenolate) were prepared. Kinetic experimental data reveal that a phenolate species with an electron-withdrawing group reacts faster than those with electron-donating groups. The reaction kinetic experiments were conducted in pseudo-first order conditions at room temperature monitored by UV-vis spectroscopy. A pentafluorophenolate nickel(II) complex (2e) reveals instantaneous reactions even at -40 °C to give a nickel(0) monocarbonyl species (3e) and the reverse reaction is also possible. According to kinetic experiments, the rate determining step (RDS) would be the formation of a 5-coordinate intermediate 4 with a negative entropy value (ΔS‡ < 0), and a positive ρ value based on the Hammett plot indicates that the electron-deficient phenolate leads to a faster CO association. Furthermore, scramble experiments suggest that phenolate de-coordinates from the intermediate 4, which gives a (PPP)Ni-CO species 6. The cationic nickel monocarbonyl intermediate can possess a P--Ni(II), P•-Ni(I), or even a P+-Ni(0) character. Such an inner-sphere electron transfer is suggested when a π-acidic ligand such as CO coordinates to a metal ion. Another possible reaction is homolysis of a Ni-O bond to give P--Ni(I) or P•-Ni(0), when a phenoxyl radical is liberated. Considering the P-O bond formation, closed-shell nucleophilic and open-shell radical pathways are suggested. A phenolate pathway reveals a lower energy state for 2e relative to other complexes (2c and 2d), while its radical pathway undergoes via a higher energy state. Therefore, the formation of a P-O bond may occur with the binding of a closed-shell phenolate to the electron-deficient P center.
Collapse
Affiliation(s)
- Kunwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nara Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Oliemuller LK, Moore CE, Thomas CM. Electronic and Structural Variations of a Nickel(0) N-Heterocyclic Phosphenium Complex in Comparison to Group 10 Analogues. Inorg Chem 2022; 61:19440-19451. [DOI: 10.1021/acs.inorgchem.2c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Leah K. Oliemuller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Drance MJ, Tanushi A, Radosevich AT. Two-Site O-H Addition to an Iridium Complex Featuring a Nonspectator Tricoordinate Phosphorus Ligand. J Am Chem Soc 2022; 144:20243-20248. [PMID: 36301929 PMCID: PMC9662588 DOI: 10.1021/jacs.2c10087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and reactivity of an ambiphilic iridium complex IrCl(PPh3)(L1) (1; L1 = P(N(o-N(2-pyridyl)C6H4)2)) featuring a chelating nontrigonal phosphorus triamide ligand is reported. The tandem Lewis basic Ir and Lewis acidic P of 1 achieve a two-site oxidative addition of phenol giving the iridaphenoxyphosphorane species IrHCl(PPh3)(L1OPh) (3'). In contrast, reactions of 1 with benzenethiol and benzeneselenol do not engage L1 and instead proceed via metal-centered oxidative addition of the chalcogen-hydrogen bond. These findings establish metal-ligand cooperation involving nonspectator reactivity of tricoordinate phosphorus ligands.
Collapse
Affiliation(s)
| | | | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Hollingsworth WM, Hill EA. Exploring the potential role of heavy pnictogen elements in ligand design for new metal-ligand cooperative chemistry. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- W. M. Hollingsworth
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - E. A. Hill
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| |
Collapse
|
8
|
Poitras AM, Oliemuller LK, Hatzis GP, Thomas CM. Highly Selective Hydroboration of Terminal Alkenes Catalyzed by a Cobalt Pincer Complex Featuring a Central Reactive N-Heterocyclic Phosphido Fragment. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andrew M. Poitras
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Leah K. Oliemuller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Gillian P. Hatzis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Birchall N, Feil CM, Gediga M, Nieger M, Gudat D. Reversible cooperative dihydrogen binding and transfer with a bis-phosphenium complex of chromium. Chem Sci 2020; 11:9571-9576. [PMID: 34094222 PMCID: PMC8161683 DOI: 10.1039/d0sc03773g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The reversible reaction of H2 with a bis-phosphenium complex of chromium provides a rare example of 3d transition metal/phosphenium cooperativity. Photolysis induces the activation of H2 and yields a spectroscopically detectable phosphenium-stabilized (σ–H2)-complex, readily showing exchange with gaseous H2 and D2. Further reaction of this complex affords a phosphine-functionalized metal hydride, representing a unique example of reversible H2 cleavage across a 3d M
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
P bond. The same species is also accessible via stepwise H+/H− transfer to the bis-phosphenium complex, and releases H2 upon heating or irradiation. Dihydrogen transfer from the H2-complex to styrene is exploited to demonstrate the first example of promoting hydrogenation with a phosphenium complex. Photolysis of a phosphenium complex enables reversible activation of H2 to yield a dihydrogen complex which stimulates H2 cleavage or catalytic hydrogenation.![]()
Collapse
Affiliation(s)
- Nicholas Birchall
- Institute of Inorganic Chemistry, University of Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Christoph M Feil
- Institute of Inorganic Chemistry, University of Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Michael Gediga
- Institute of Inorganic Chemistry, University of Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Martin Nieger
- Department of Chemistry P.O. Box 55 00014 University of Helsinki Finland
| | - Dietrich Gudat
- Institute of Inorganic Chemistry, University of Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| |
Collapse
|
10
|
Hatzis GP, Oliemuller LK, Dickie DA, Thomas CM. N‐Heterocyclic Phosphido Complexes of Rhodium Supported by a Rigid Pincer Ligand. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gillian P. Hatzis
- Department of Chemistry and Biochemistry The Ohio State University 100 W 18th Avenue Columbus 43210 Ohio OH USA
| | - Leah K. Oliemuller
- Department of Chemistry and Biochemistry The Ohio State University 100 W 18th Avenue Columbus 43210 Ohio OH USA
| | - Diane A. Dickie
- Department of Chemistry University of Virginia McCormick Road, PO Box 400319 22904 Charlottesville VA USA
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry The Ohio State University 100 W 18th Avenue Columbus 43210 Ohio OH USA
| |
Collapse
|
11
|
Lee K, Moore CE, Thomas CM. Synthesis of Ni(II) Complexes Supported by Tetradentate Mixed-Donor Bis(amido)/Phosphine/Phosphido Ligands by Phosphine Substituent Elimination. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyounghoon Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Poitras AM, Bezpalko MW, Moore CE, Dickie DA, Foxman BM, Thomas CM. A Series of Dimeric Cobalt Complexes Bridged by N-Heterocyclic Phosphido Ligands. Inorg Chem 2020; 59:4729-4740. [PMID: 32186372 DOI: 10.1021/acs.inorgchem.9b03790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A tridentate [PPP] ligand has been used to construct a series of dimeric cobalt complexes and explore cooperative multielectron redox processes that are both metal- and ligand-centered. Reduction of (PPClP)CoCl2 (1) with excess magnesium affords the CoICoI N-heterocyclic phosphido (NHP-)-bridged symmetric dimer [(μ-PPP)Co]2 (2). Two-electron oxidation of 2 with FcPF6 generates an asymmetrically bridged dication [(μ-PPP)Co]2[PF6]2 (3) in which the oxidation has occurred in a delocalized fashion throughout the Co2P2 core. In contrast, [(μ-PPP)Co]2+ (5), which can be generated either by one-electron oxidation of 2 with FcPF6 or comportionation of 2 and 3, features an asymmetric geometry and localized mixed valence. Treatment of 1 with the milder reductants CoCp2 and KBEt3H does not lead to formation of 2, 3, or 5 but instead generates dimeric species [(PPP)CoCl]2 (6) and [(PPP)CoH]2 (7). Unlike 2-5, where the phosphine side arms of the tridentate [PPP] ligand span the two Co centers, complex 6 and 7 are connected solely by NHP- ligands that bridge the two (PPP)Co fragments.
Collapse
Affiliation(s)
- Andrew M Poitras
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Mark W Bezpalko
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Diane A Dickie
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bruce M Foxman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Elsby MR, Baker RT. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem Soc Rev 2020; 49:8933-8987. [DOI: 10.1039/d0cs00509f] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of metal–ligand cooperation (MLC) by transition metal bifunctional catalysts has emerged at the forefront of homogeneous catalysis science.
Collapse
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|