1
|
Ji W, Abou-Khalil C, Parameswarappa Jayalakshmamma M, Boufadel M, Lee K. Post-Formation of Oil Particle Aggregates: Breakup and Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2341-2350. [PMID: 36723450 DOI: 10.1021/acs.est.2c05866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spilled oil slicks are likely to break into droplets in the subtidal and intertidal zones of seashores due to wave energy. The nonliving suspended fine particles in coastal ecosystems can interact with the dispersed oil droplets, resulting in the formation of Oil Particle Aggregates (OPAs). Many investigations assumed that these aggregates will settle due to the particles' high density. Recent studies, however, reported that some particles penetrate the oil droplets, which results in further breakup while forming smaller OPAs that remain suspended in the water column. Here, we investigated the interaction of crude oil droplets with intertidal and subtidal sediments, as well as artificial pure kaolinite, in natural seawater. Results showed that the interaction between oil droplets and intertidal sediments was not particularly stable, with an Oil Trapping Efficiency (OTE) < 25%. When using subtidal sediments, OTE reached 56%. With artificial kaolinite, OPA formation and breakup were more significant (OTE reaching up to 67%) and occurred faster (within 12 h). Oil chemistry analysis showed that the biodegradation of oil in seawater (half-life of 485 h) was significantly enhanced with the addition of sediments, with half-lives of 305, 265, and 150 h when adding intertidal sediments, subtidal sediments, and pure kaolinite, respectively. Such results reveal how the sediments' shape and size affect the various oil-sediment interaction mechanisms, and the subsequent impact on the microbial degradation of petroleum hydrocarbons. Future studies should consider investigating the application of fine (several microns) and sharp (elongated-sheeted) sediments as a nondestructive and nontoxic technique for dispersing marine oil spills.
Collapse
Affiliation(s)
- Wen Ji
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Charbel Abou-Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Meghana Parameswarappa Jayalakshmamma
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Kenneth Lee
- Department of Fisheries and Oceans, Dartmouth, NSB2Y 4A2, Canada
| |
Collapse
|
2
|
Sun D, Wang Y, Gao J, Liu S, Liu X. Insights into the relation of crude oil components and surfactants to the stability of oily wastewater emulsions: Influence of asphaltenes, colloids, and nonionic surfactants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Li J, An W, Xu C, Hu J, Gao H, Du W, Li X. Sunken oil detection and classification using MBES backscatter data. MARINE POLLUTION BULLETIN 2022; 180:113795. [PMID: 35691179 DOI: 10.1016/j.marpolbul.2022.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Sunken oil incidents have occurred multiple times in the Bohai Sea over the past ten years. Currently, quick and effective sunken oil detection and classification remains a difficult problem. In this study, sonar detection experiments are conducted to obtain acoustic image samples using a multibeam echosounder (MBES) in a large seawater tank at the bottom of the area where the sunken oil is located. A series of MBES data corrections are constructed to generate backscatter strength images that can reflect the target characteristics directly. Meanwhile, eight-dimensional features are extracted, and a support vector machine (SVM) classification framework is built to classify the sunken oil and other interference targets. The results indicate that the MBES backscatter images provide an alternative approach for detecting and classifying sunken oil. The overall target classification accuracy reaches 88.5% by the SVM algorithm. Thus, this study provides a basis for further investigation of detecting sunken oil.
Collapse
Affiliation(s)
- Jianwei Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; CNOOC Energy Technology & Services Limited, Safety & Environmental Protection Branch, Tianjin 300450, China; School of Hydraulic Engineering, Ludong University, Yantai, China
| | - Wei An
- CNOOC Energy Technology & Services Limited, Safety & Environmental Protection Branch, Tianjin 300450, China
| | - Chao Xu
- College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Hu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
| | - Weidong Du
- College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China.
| | - XueYan Li
- School of Hydraulic Engineering, Ludong University, Yantai, China.
| |
Collapse
|
4
|
Environmental Impacts and Challenges Associated with Oil Spills on Shorelines. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oil spills are of great concern because they impose a threat to the marine ecosystem, including shorelines. As oil spilled at sea is transported to the shoreline, and after its arrival, its behavior and physicochemical characteristics change because of natural weathering phenomena. Additionally, the fate of the oil depends on shoreline type, tidal energy, and environmental conditions. This paper critically overviews the vulnerability of shorelines to oil spill impact and the implication of seasonal variations with the natural attenuation of oil. A comprehensive review of various monitoring techniques, including GIS tools and remote sensing, is discussed for tracking, and mapping oil spills. A comparison of various remote sensors shows that laser fluorosensors can detect oil on various types of substrates, including snow and ice. Moreover, current methods to prevent oil from reaching the shoreline, including physical booms, sorbents, and dispersants, are examined. The advantages and limitations of various physical, chemical, and biological treatment methods and their application suitability for different shore types are discussed. The paper highlights some of the challenges faced while managing oil spills, including viewpoints on the lack of monitoring data, the need for integrated decision-making systems, and the development of rapid response strategies to optimize the protection of shorelines from oil spills.
Collapse
|
5
|
Li W, Yu Y, Xiong D, Qi Z, Fu S, Yu X. Effects of chemical dispersant on the surface properties of kaolin and aggregation with spilled oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30496-30506. [PMID: 35000158 DOI: 10.1007/s11356-021-17746-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
After oil spills occur, dispersed oil droplets can collide with suspended particles in the water column to form the oil-mineral aggregate (OMA) and settle to the seafloor. However, only a few studies have concerned the effect of chemical dispersant on this process. In this paper, the mechanism by which dispersant affects the surface properties of kaolin and the viscosity and oil-seawater interfacial tension (IFTow) of Roncador crude oil were separately investigated by small-scale tests. The results indicated that the presence of dispersant impairs the zeta potential and enhances the hydrophobicity of kaolin. The viscosity of Roncador crude oil rose slightly as the dosage of dispersant increased, while IFTow decreased significantly. Furthermore, the oil dispersion and OMA formation at different dispersant-to-oil ratio (DOR) were evaluated in a wave tank. When DOR was less than 1:40, the effect of dispersant on the dispersion of spilled oil was not obvious. With the increasing DOR, the effect became more pronounced, and the adhesion between oil droplets and kaolin was inhibited. The size ratio between oil droplets and particles is the significant factor for OMA formation. The closer the oil-mineral size ratio is to 1, the more difficultly the OMA forms.
Collapse
Affiliation(s)
- Wenxin Li
- Coll Environm Sci & Engn, Dalian Maritime Univ, Dalian, 116026, China
| | - Yue Yu
- Coll Environm Sci & Engn, Dalian Maritime Univ, Dalian, 116026, China
| | - Deqi Xiong
- Coll Environm Sci & Engn, Dalian Maritime Univ, Dalian, 116026, China.
| | - Zhixin Qi
- Coll Environm Sci & Engn, Dalian Maritime Univ, Dalian, 116026, China
| | - Sinan Fu
- Coll Environm Sci & Engn, Dalian Maritime Univ, Dalian, 116026, China
| | - Xinping Yu
- Coll Environm Sci & Engn, Dalian Maritime Univ, Dalian, 116026, China
| |
Collapse
|
6
|
Oil Spill Modeling: A Critical Review on Current Trends, Perspectives, and Challenges. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9020181] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several oil spill simulation models exist in the literature, which are used worldwide to simulate the evolution of an oil slick created from marine traffic, petroleum production, or other sources. These models may range from simple parametric calculations to advanced, new-generation, operational, three-dimensional numerical models, coupled to meteorological, hydrodynamic, and wave models, forecasting in high-resolution and with high precision the transport and fate of oil. This study presents a review of the transport and oil weathering processes and their parameterization and critically examines eighteen state-of-the-art oil spill models in terms of their capacity (a) to simulate these processes, (b) to consider oil released from surface or submerged sources, (c) to assimilate real-time field data for model initiation and forcing, and (d) to assess uncertainty in the produced predictions. Based on our review, the most common oil weathering processes involved are spreading, advection, diffusion, evaporation, emulsification, and dispersion. The majority of existing oil spill models do not consider significant physical processes, such as oil dissolution, photo-oxidation, biodegradation, and vertical mixing. Moreover, timely response to oil spills is lacking in the new generation of oil spill models. Further improvements in oil spill modeling should emphasize more comprehensive parametrization of oil dissolution, biodegradation, entrainment, and prediction of oil particles size distribution following wave action and well blow outs.
Collapse
|
7
|
Antioxidant Response and Oxidative Stress in the Respiratory Tree of Sea Cucumber (Apostichopus japonicus) Following Exposure to Crude Oil and Chemical Dispersant. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8080547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sea cucumber (Apostichopus japonicus) is mainly cultured in the coastal zone, where it is easily threatened by accidental oil spills. Chemical dispersant is one of the efficient oil spill responses for mitigating the overall environmental damage of oil spills. However, the impact of crude oil and chemical dispersants on sea cucumber is less well known. Hence, the present study focused on exploring the antioxidant response and oxidative stress in the respiratory tree of sea cucumber following exposure to GM-2 chemical dispersant (DISP), water-accommodated fractions (WAF), and chemically enhanced WAF (CEWAF) of Oman crude oil for 24 h. Results manifested that WAF exposure caused a significant increase in the reactive oxygen species (ROS) level (5.29 ± 0.30 AU·mgprot−1), and the effect was much more obvious in CEWAF treatment (5.73 ± 0.16 AU·mgprot−1). Total antioxidant capacity (T-AOC), as an important biomarker of the antioxidant defense capacity, showed an increasing trend following WAF exposure (0.95 ± 0.12 U·mgprot−1) while a significant reduction in T-AOC was observed following CEWAF exposure (0.23 ± 0.13 U·mgprot−1). Moreover, we also evaluated the oxidative damage of the macromolecules (DNA, protein, and lipid), and our results revealed that the presence of chemical dispersant enhanced oxidative damage caused by crude oil to sea cucumber.
Collapse
|
8
|
Distribution of Polycyclic Aromatic Hydrocarbons in Sunken Oils in the Presence of Chemical Dispersant and Sediment. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7090282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The formation of sunken oils is mainly dominated by the interaction between spilled oils and sediments. Due to their patchiness and invisibility, cleaning operations become difficult. As a result, sunken oils may cause long-term and significant damage to marine benthonic organisms. In the present study, a bench experiment was designed and conducted to investigate the quantitative distribution of polycyclic aromatic hydrocarbons (PAHs) in sunken oils in the presence of chemical dispersant and sediment. The oil sinking efficiency (OSE) of 16 priority total PAHs in the sediment phase was analyzed with different dosages of dispersant. The results showed that the synergistic effect of chemical dispersant and sediment promoted the formation of sunken oils, and the content of PAHs partitioned in the sunken oils increased with the increase of dispersant-to-oil ratios (DORs). Furthermore, with the addition of chemical dispersant, due to the solubility and hydrophobicity of individual PAHs, the high molecular weight (HMW) PAHs with 4–6 rings tended to partition to sediment compared with low molecular weight (LMW) PAHs with 2–3 rings. The synergistic effect of chemical dispersant and sediment could enhance the OSE of HMW PAHs in sunken oils, which might subsequently cause certain risks for marine benthonic organisms.
Collapse
|