1
|
Foroutan M, Boudaghi A, Alibalazadeh M. Fullerenes containing water molecules: a study of reactive molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:32493-32502. [PMID: 37997178 DOI: 10.1039/d3cp04420c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A different technique was used to investigate fullerenes encapsulating a polar guest species. By reactive molecular dynamics simulations, three types of fullerenes were investigated on a gold surface: an empty C60, a single H2O molecule inside C60 (H2O@C60), and two water molecules inside C60 ((H2O)2@C60). Our findings revealed that despite the free movement of all fullerenes on gold surfaces, confined H2O molecules within the fullerenes result in a distinct pattern of motion in these systems. The (H2O)2@C60 complex had the highest displacement and average velocity, while C60 had the lowest displacement and average velocity. The symmetry of molecules and the polarity of water seem to be crucial in these cases. ReaxFF simulations showed that water molecules in an H2O molecule, H2O@C60, and (H2O)2@C60 have dipole moments of 1.76, 0.42, and 0.47 D, respectively. A combination of the non-polar C60 and polar water demonstrated a significant reduction in the dipole moment of H2O molecules due to encapsulation. The dipole moments of water molecules agreed with those in other studies, which can be useful in the development of biocompatible and high-efficiency nanocars.
Collapse
Affiliation(s)
- Masumeh Foroutan
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Ahmad Boudaghi
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mahtab Alibalazadeh
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Serwatka T, Yim S, Ayotte P, Roy PN. On the nature of the Schottky anomaly in endohedral water. J Chem Phys 2023; 158:124310. [PMID: 37003742 DOI: 10.1063/5.0148882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
In this work, we study the heat capacity contribution of a rigid water molecule encapsulated in C60 by performing six-dimensional eigenstate calculations with the inclusion of its quantized rotational and translational degrees of freedom. Two confinement model potentials are considered: in the first, confinement is described using distributed pairwise Lennard-Jones interactions, while in the second, the water molecule is trapped within an eccentric but isotropic 3D harmonic effective confinement potential [Wespiser et al., J. Chem. Phys. 156, 074304 (2022)]. Contributions to the heat capacity from both the ortho and para nuclear spin isomers of water are considered to enable the effects of their interconversion to be assessed. By including a symmetry-breaking quadrupolar potential energy term in the Hamiltonian, we can reproduce the experimentally observed Schottky anomaly at ∼2 K [Suzuki et al., J. Phys. Chem. Lett. 10, 1306 (2019)]. Furthermore, our calculations predict a second Schottky anomaly at ∼0.1 K resulting from the H configuration, a different orientational arrangement of the fullerene cages in crystalline solid C60. Contributions from the H configuration to CV also explain the second peak observed at ∼7 K in the experimentally measured heat capacity.
Collapse
Affiliation(s)
- Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Spencer Yim
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Patrick Ayotte
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Rademacher J, Reedy ES, Negri F, Alom S, Whitby RJ, Levitt MH, Campbell EK. Gas-phase electronic spectroscopy of nuclear spin isomer separated H 2O@C and D 2O@C. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2173507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
| | | | - Fabrizia Negri
- Dipartimento di Chimica ‘Giacomo Ciamician’ and INSTM, Università di Bologna, Bologna, Italy
| | - Shamim Alom
- Chemistry, University of Southampton, Southampton, Hants, UK
| | | | | | | |
Collapse
|
4
|
Carrillo‐Bohórquez O, Valdés Á, Prosmiti R. Unraveling the Origin of Symmetry Breaking in H 2 O@C 60 Endofullerene Through Quantum Computations. Chemphyschem 2022; 23:e202200034. [PMID: 35289042 PMCID: PMC9311847 DOI: 10.1002/cphc.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Indexed: 11/09/2022]
Abstract
We explore the origin of the anomalous splitting of the 101 levels reported experimentally for the H2 O@C60 endofullerene, in order to give some insight about the physical interpretations of the symmetry breaking observed. We performed fully-coupled quantum computations within the multiconfiguration time-dependent Hartree approach employing a rigorous procedure to handle such computationally challenging problems. We introduce two competing physical models, and discuss the observed unconventional quantum patterns in terms of anisotropy in the interfullerene interactions, caused by the change in the off-center position of the encapsulated water molecules inside the cage or the uniaxial C60 -cage distortion, arising from noncovalent bonding upon water's encapsulation, or exohedral fullerene perturbations. Our results show that both scenarios could reproduce the experimentally observed rotational degeneracy pattern, although quantitative agreement with the available experimental rotational levels splitting value has been achieved by the model that considers an uniaxial elongation of the C60 -cage. Such finding supports that the observed symmetry breaking could be mainly caused by the distortion of the fullerene cage. However, as nuclear quantum treatments rely on the underlying interactions, a decisive conclusion hinges on the availability of their improved description, taken into account both endofullerene and exohedral environments, from forthcoming highly demanding electronic structure many-body interaction studies.
Collapse
Affiliation(s)
- Orlando Carrillo‐Bohórquez
- Institute of Fundamental Physics (IFF-CSIC), CSICSerrano 12328006MadridSpain
- Departamento de FísicaUniversidad Nacional de ColombiaCalle 26, Cra 39, Edificio 404BogotáColombia
| | - Álvaro Valdés
- Escuela de FísicaUniversidad Nacional de ColombiaSede Medellín, A. A. 3840MedellínColombia
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSICSerrano 12328006MadridSpain
| |
Collapse
|
5
|
Xu M, Felker PM, Bačić Z. H 2O inside the fullerene C 60: Inelastic neutron scattering spectrum from rigorous quantum calculations. J Chem Phys 2022; 156:124101. [PMID: 35364860 DOI: 10.1063/5.0086842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a methodology that, for the first time, allows rigorous quantum calculation of the inelastic neutron scattering (INS) spectra of a triatomic molecule in a nanoscale cavity, in this case, H2O inside the fullerene C60. Both moieties are taken to be rigid. Our treatment incorporates the quantum six-dimensional translation-rotation (TR) wave functions of the encapsulated H2O, which serve as the spatial parts of the initial and final states of the INS transitions. As a result, the simulated INS spectra reflect the coupled TR dynamics of the nanoconfined guest molecule. They also exhibit the features arising from symmetry breaking observed for solid H2O@C60 at low temperatures. Utilizing this methodology, we compute the INS spectra of H2O@C60 for two incident neutron wavelengths and compare them with the corresponding experimental spectra. Good overall agreement is found, and the calculated spectra provide valuable additional insights.
Collapse
Affiliation(s)
- Minzhong Xu
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
6
|
Wespiser C, Putaud T, Kalugina YN, Soldera A, Roy PN, Michaut X, Ayotte P. Ro-translational dynamics of confined water: I - The confined asymmetric rotor model. J Chem Phys 2022; 156:074304. [DOI: 10.1063/5.0079565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Thomas Putaud
- Universite de Sherbrooke Departement de chimie, Canada
| | | | - Armand Soldera
- Department of Chemistry, Universite de Sherbrooke, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo Department of Chemistry, Canada
| | | | - Patrick Ayotte
- Département de Chimie, Universite de Sherbrooke Departement de chimie, Canada
| |
Collapse
|
7
|
Felker PM, Bačić Z. Noncovalently bound molecular complexes beyond diatom–diatom systems: full-dimensional, fully coupled quantum calculations of rovibrational states. Phys Chem Chem Phys 2022; 24:24655-24676. [DOI: 10.1039/d2cp04005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The methodological advances made in recent years have significantly extended the range and dimensionality of noncovalently bound molecular complexes for which full-dimensional quantum calculations of their rovibrational states are feasible.
Collapse
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| |
Collapse
|
8
|
Dolgonos GA. Exploring the Properties of H
2
O@C
60
with the Local Second‐Order Møller‐Plesset Perturbation Theory: Blue or Red Shift in C
60
and H
2
O Fundamentals to Expect? ChemistrySelect 2021. [DOI: 10.1002/slct.202103004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Grygoriy A. Dolgonos
- Institute of Chemistry University of Graz Heinrichstrasse 28/IV A-8010 Graz Austria
- Life Chemicals Inc. Murmanska Str. 5 02660 Kyiv Ukraine
| |
Collapse
|
9
|
Carrillo-Bohórquez O, Valdés Á, Prosmiti R. Encapsulation of a Water Molecule inside C 60 Fullerene: The Impact of Confinement on Quantum Features. J Chem Theory Comput 2021; 17:5839-5848. [PMID: 34420292 PMCID: PMC8444341 DOI: 10.1021/acs.jctc.1c00662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/30/2022]
Abstract
We introduce an efficient quantum fully coupled computational scheme within the multiconfiguration time-dependent Hartree (MCTDH) approach to handle the otherwise extremely costly computations of translational-rotational-vibrational states and energies of light-molecule endofullenes. Quantum calculations on energy levels are reported for a water molecule inside C60 fullerene by means of such a systematic approach that includes all nine degrees of freedom of H2O@C60 and does not consider restrictions above them. The potential energy operator is represented as a sum of natural potentials employing the n-mode expansion, along with the exact kinetic energy operator, by introducing a set of Radau internal coordinates for the H2O molecule. On the basis of the present rigorous computations, various aspects of the quantized intermolecular dynamics upon confinement of H2O@C60 are discussed, such as the rotational energy level splitting and the significant frequency shifts of the encapsulated water molecule vibrations. The impact of water encapsulation on quantum features is explored, and insights into the nature of the underlying forces are provided, highlighting the importance of a reliable first-principles description of the guest-host interactions.
Collapse
Affiliation(s)
- Orlando Carrillo-Bohórquez
- Departamento
de Física, Universidad Nacional
de Colombia, Calle 26, Cra 39, 404 Edificio, Bogotá, Colombia
- Institute
of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain
| | - Álvaro Valdés
- Escuela
de Física, Universidad Nacional
de Colombia, Sede Medellín, A. A 3840 Medellín, Colombia
| | - Rita Prosmiti
- Institute
of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
10
|
Shugai A, Nagel U, Murata Y, Li Y, Mamone S, Krachmalnicoff A, Alom S, Whitby RJ, Levitt MH, Rõõm T. Infrared spectroscopy of an endohedral water in fullerene. J Chem Phys 2021; 154:124311. [PMID: 33810704 DOI: 10.1063/5.0047350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An infrared absorption spectroscopy study of the endohedral water molecule in a solid mixture of H2O@C60 and C60 was carried out at liquid helium temperature. From the evolution of the spectra during the ortho-para conversion process, the spectral lines were identified as para-H2O and ortho-H2O transitions. Eight vibrational transitions with rotational side peaks were observed in the mid-infrared: ω1, ω2, ω3, 2ω1, 2ω2, ω1 + ω3, ω2 + ω3, and 2ω2 + ω3. The vibrational frequencies ω2 and 2ω2 are lower by 1.6% and the rest by 2.4%, as compared to those of free H2O. A model consisting of a rovibrational Hamiltonian with the dipole and quadrupole moments of H2O interacting with the crystal field was used to fit the infrared absorption spectra. The electric quadrupole interaction with the crystal field lifts the degeneracy of the rotational levels. The finite amplitudes of the pure v1 and v2 vibrational transitions are consistent with the interaction of the water molecule dipole moment with a lattice-induced electric field. The permanent dipole moment of encapsulated H2O is found to be 0.50 ± 0.05 D as determined from the far-infrared rotational line intensities. The translational mode of the quantized center-of-mass motion of H2O in the molecular cage of C60 was observed at 110 cm-1 (13.6 meV).
Collapse
Affiliation(s)
- A Shugai
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - U Nagel
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Y Murata
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Yongjun Li
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - S Mamone
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - A Krachmalnicoff
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - S Alom
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - R J Whitby
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - M H Levitt
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - T Rõõm
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
11
|
Zhukov SS, Balos V, Hoffman G, Alom S, Belyanchikov M, Nebioglu M, Roh S, Pronin A, Bacanu GR, Abramov P, Wolf M, Dressel M, Levitt MH, Whitby RJ, Gorshunov B, Sajadi M. Rotational coherence of encapsulated ortho and para water in fullerene-C 60 revealed by time-domain terahertz spectroscopy. Sci Rep 2020; 10:18329. [PMID: 33110105 PMCID: PMC7592058 DOI: 10.1038/s41598-020-74972-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 11/15/2022] Open
Abstract
We resolve the real-time coherent rotational motion of isolated water molecules encapsulated in fullerene-C60 cages by time-domain terahertz (THz) spectroscopy. We employ single-cycle THz pulses to excite the low-frequency rotational motion of water and measure the subsequent coherent emission of electromagnetic waves by water molecules. At temperatures below ~ 100 K, C60 lattice vibrational damping is mitigated and the quantum dynamics of confined water are resolved with a markedly long rotational coherence, extended beyond 10 ps. The observed rotational transitions agree well with low-frequency rotational dynamics of single water molecules in the gas phase. However, some additional spectral features with their major contribution at ~2.26 THz are also observed which may indicate interaction between water rotation and the C60 lattice phonons. We also resolve the real-time change of the emission pattern of water after a sudden cooling to 4 K, signifying the conversion of ortho-water to para-water over the course of 10s hours. The observed long coherent rotational dynamics of isolated water molecules confined in C60 makes this system an attractive candidate for future quantum technology.
Collapse
Affiliation(s)
| | | | | | - Shamim Alom
- School of Chemistry, University of Southampton, Southampton, UK
| | | | - Mehmet Nebioglu
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - Seulki Roh
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - Artem Pronin
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - George R Bacanu
- School of Chemistry, University of Southampton, Southampton, UK
| | - Pavel Abramov
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Martin Wolf
- Fritz-Haber-Institut der MPG, Berlin, Germany
| | - Martin Dressel
- Moscow Institute of Physics and Technology, Moscow, Russia
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | | | | | | | - Mohsen Sajadi
- Fritz-Haber-Institut der MPG, Berlin, Germany.
- Department of Chemistry, University of Paderborn, Paderborn, Germany.
| |
Collapse
|
12
|
Xu M, Felker PM, Bačić Z. Light molecules inside the nanocavities of fullerenes and clathrate hydrates: inelastic neutron scattering spectra and the unexpected selection rule from rigorous quantum simulations. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1794097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Minzhong Xu
- Department of Chemistry, New York University, New York, NY, USA
| | - Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, NY, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Felker PM, Bačić Z. Flexible water molecule in C60: Intramolecular vibrational frequencies and translation-rotation eigenstates from fully coupled nine-dimensional quantum calculations with small basis sets. J Chem Phys 2020; 152:014108. [DOI: 10.1063/1.5138992] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
14
|
Xu M, Felker PM, Mamone S, Horsewill AJ, Rols S, Whitby RJ, Bačić Z. The Endofullerene HF@C 60: Inelastic Neutron Scattering Spectra from Quantum Simulations and Experiment, Validity of the Selection Rule, and Symmetry Breaking. J Phys Chem Lett 2019; 10:5365-5371. [PMID: 31454486 DOI: 10.1021/acs.jpclett.9b02005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate quantum simulations of the low-temperature inelastic neutron scattering (INS) spectra of HF@C60 are reported for two incident neutron wavelengths. They are distinguished by the rigorous inclusion of symmetry-breaking effects in the treatment and having the spectra computed with HF as the guest, rather than H2 or HD, as in the past work. The results demonstrate that the precedent-setting INS selection rule, originally derived for H2 and HD in near-spherical nanocavities, applies also to HF@C60, despite the large mass asymmetry of HF and the strongly mixed character of its translation-rotation eigenstates. This lends crucial support to the theoretical prediction made earlier that the INS selection rule is valid for any diatomic molecule in near-spherical nanoconfinement. The selection rule remains valid in the presence of symmetry breaking but is modified slightly in an interesting way. Comparison is made with the recently published experimental INS spectrum of HF@C60. The agreement is very good, apart from one peak for which our calculations suggest a reassignment. This reassignment is consistent with the measured INS spectrum presented in this work, which covers an extended energy range.
Collapse
Affiliation(s)
- Minzhong Xu
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Peter M Felker
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , United States
| | - Salvatore Mamone
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Anthony J Horsewill
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Stéphane Rols
- Institut Laue-Langevin , CS 20156, 38042 Grenoble , France
| | - Richard J Whitby
- Chemistry, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Zlatko Bačić
- Department of Chemistry , New York University , New York , New York 10003 , United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , 3663 Zhongshan Road North , Shanghai 200062 , China
| |
Collapse
|
15
|
Bai H, Gao H, Feng W, Zhao Y, Wu Y. Interaction in Li@Fullerenes and Li +@Fullerenes: First Principle Insights to Li-Based Endohedral Fullerenes. NANOMATERIALS 2019; 9:nano9040630. [PMID: 31003416 PMCID: PMC6523142 DOI: 10.3390/nano9040630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022]
Abstract
This work reveals first principle results of the endohedral fullerenes made from neutral or charged single atomic lithium (Li or Li+) encapsulated in fullerenes with various cage sizes. According to the calculated binding energies, it is found that the encapsulation of a single lithium atom is energetically more favorable than that of lithium cation. Lithium, in both atomic and cationic forms, exhibits a clear tendency to depart from the center in large cages. Interaction effects dominate the whole encapsulation process of lithium to carbon cages. Further, the nature of the interaction between Li (or Li+) and carbon cages is discussed based on reduced density gradient, energy decomposition analysis, and charge transfer.
Collapse
Affiliation(s)
- Hongcun Bai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China.
| | - Hongfeng Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China.
| | - Wei Feng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China.
| | - Yaping Zhao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China.
| | - Yuhua Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China.
| |
Collapse
|
16
|
Rashed E, Dunn JL. Interactions between a water molecule and C 60 in the endohedral fullerene H 2O@C 60. Phys Chem Chem Phys 2019; 21:3347-3359. [PMID: 30688323 DOI: 10.1039/c8cp04390f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water molecule encapsulated inside a C60 fullerene cage behaves almost like an asymmetric top rotor, as would be expected of an isolated water molecule. However, inelastic neutron scattering (INS) experiments show evidence of interactions between the water molecule and its environment [Goh et al., Phys. Chem. Chem. Phys., 2014, 16, 21330]. In particular, a resolved splitting of the 101 rotational level into a singlet and a doublet indicates that the water molecule experiences an environment of lower symmetry than the icosahedral symmetry of a C60 cage. Recent calculations have shown that the splitting can be explained in terms of electrostatic quadrupolar interactions between the water molecule and the electron clouds of nearest-neighbour C60 molecules, which results in an effective environment of S6 symmetry [Felker et al., Phys. Chem. Chem. Phys., 2017, 19, 31274 and Bačić et al., Faraday Discussions, 2018, 212, 547-567]. We use symmetry arguments to obtain a simple algebraic expression, expressed in terms of a linear combination of products of translational and rotational basis functions, that describes the effect on a water molecule of any potential of S6 symmetry. We show that we can reproduce the results of the electrostatic interaction model up to ≈12 meV in terms of two unknown parameters only. The resulting potential is in a form that can readily be used in future calculations, without needing to use density functional theory (DFT) for example. Adjusting parameters in our potential would help identify whether other symmetry-lowering interactions are also present if experimental results that resolve splittings in higher-energy rotational levels are obtained in the future. As another application of our model, we show that the results of DFT calculations of the variation in energy as a water molecule moves inside the cage of an isolated C60 molecule, where the water molecule experiences an environment of icosahedral symmetry, can also be reproduced using our model.
Collapse
Affiliation(s)
- Effat Rashed
- School of Physics & Astronomy, University Park, Nottingham, UK.
| | | |
Collapse
|
17
|
Valdés Á, Carrillo-Bohórquez O, Prosmiti R. Fully Coupled Quantum Treatment of Nanoconfined Systems: A Water Molecule inside a Fullerene C 60. J Chem Theory Comput 2018; 14:6521-6531. [PMID: 30419169 DOI: 10.1021/acs.jctc.8b00801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We implemented a systematic procedure for treating the quantal rotations by including all translational and vibrational degrees of freedom for any triatomic bent molecule in any embedded or confined environment, within the MCTDH framework. Fully coupled quantum treatments were employed to investigate unconventional properties in nanoconfined molecular systems. In this way, we facilitate a complete theoretical analysis of the underlying dynamics that enables us to compute the energy levels and the nuclear spin isomers of a single water molecule trapped in a C60 fullerene cage. The key point lies in the full 9D description of both nuclear and electronic degrees of freedom, as well as a reliable representation of the guest-host interaction. The presence of occluded impurities or inhomogeneities due to noncovalent interactions in the interfullerene environment could modify aspects of the potential, causing significant coupling between otherwise uncoupled modes. Using specific n-mode model potentials, we obtained splitting patterns that confirm the effects of symmetry breaking observed by experiments in the ground ortho-H2O state. Further, our investigation reveals that the first rotationally excited states of the encapsulated ortho- and para-H2O have also raised their 3-fold degeneracy. In view of the complexity of the problem, our results highlight the importance of accurate and computational demanding approaches for building up predictive models for such nanoconfined molecules.
Collapse
Affiliation(s)
- Álvaro Valdés
- Departamento de Física , Universidad Nacional de Colombia , Calle 26, Cra 39, Edicio 404 , Bogotá , Colombia
| | - Orlando Carrillo-Bohórquez
- Departamento de Física , Universidad Nacional de Colombia , Calle 26, Cra 39, Edicio 404 , Bogotá , Colombia
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC , Serrano 123 , 28006 Madrid , Spain
| |
Collapse
|
18
|
Bačić Z. Perspective: Accurate treatment of the quantum dynamics of light molecules inside fullerene cages: Translation-rotation states, spectroscopy, and symmetry breaking. J Chem Phys 2018; 149:100901. [PMID: 30219006 DOI: 10.1063/1.5049358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this perspective, I review the current status of the theoretical investigations of the quantum translation-rotation (TR) dynamics and spectroscopy of light molecules encapsulated inside fullerenes, mostly C60 and C70. The methodologies developed in the past decade allow accurate quantum calculations of the TR eigenstates of one and two nanoconfined molecules and have led to deep insights into the nature of the underlying dynamics. Combining these bound-state methodologies with the formalism of inelastic neutron scattering (INS) has resulted in the novel and powerful approach for the quantum calculation of the INS spectra of a diatomic molecule in a nanocavity with an arbitrary geometry. These simulations have not only become indispensable for the interpretation and assignment of the experimental spectra but are also behind the surprising discovery of the INS selection rule for diatomics in near-spherical nanocavities. Promising directions for future research are discussed.
Collapse
Affiliation(s)
- Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
19
|
Zhu GZ, Liu Y, Hashikawa Y, Zhang QF, Murata Y, Wang LS. Probing the interaction between the encapsulated water molecule and the fullerene cages in H 2O@C 60- and H 2O@C 59N . Chem Sci 2018; 9:5666-5671. [PMID: 30062000 PMCID: PMC6050629 DOI: 10.1039/c8sc01031e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/02/2018] [Indexed: 12/21/2022] Open
Abstract
We report a high-resolution photoelectron imaging study of cryogenically-cooled H2O@C60- and H2O@C59N- endohedral fullerene anions. The electron affinity (EA) of H2O@C60 is measured to be 2.6923 ± 0.0008 eV, which is 0.0088 eV higher than the EA of C60, while the EA of H2O@C59N is measured to be 3.0058 eV ± 0.0007 eV, which is 0.0092 eV lower than the EA of C59N. The opposite shifts are found to be due to the different electrostatic interactions between the encapsulated water molecule and the fullerene cages in the two systems. There is a net coulombic attraction between the guest and host in H2O@C60-, but a repulsive interaction in H2O@C59N-. We have also observed low-frequency features in the photoelectron spectra tentatively attributed to the hindered rotational excitations of the encapsulated H2O molecule, providing further insights into the guest-host interactions in H2O@C60- and H2O@C59N-.
Collapse
Affiliation(s)
- Guo-Zhu Zhu
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , USA .
| | - Yuan Liu
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , USA .
| | - Yoshifumi Hashikawa
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Qian-Fan Zhang
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , USA .
| | - Yasujiro Murata
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Lai-Sheng Wang
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , USA .
| |
Collapse
|