1
|
Lai YF, Leung L, Timm MJ, Walker GC, Polanyi JC. Abortive reaction leads to selective adsorbate rotation. Faraday Discuss 2024; 251:448-456. [PMID: 38808590 DOI: 10.1039/d3fd00167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Electron-induced dissociation of a fluorocarbon adsorbate CF3 (ad) at 4.6 K is shown by Scanning Tunnelling Microscopy (STM) to form directed energetic F-atom 'projectiles' on Cu(110). The outcome of a collision between these directed projectiles and stationary co-adsorbed allyl 'target' molecules was found through STM to give rotational excitation of the target allyl, clockwise or anti-clockwise, depending on the chosen collision geometry. Molecular dynamics computation linked the collisional excitation of the allyl target to an 'abortive chemical reaction', in which the approach of the F-projectile stretched an H-C bond lifting the allyl above the surface, facilitating isomerization from 'Across' to 'Along' a Cu row.
Collapse
Affiliation(s)
- Yi-Fang Lai
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Lydie Leung
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Matthew J Timm
- Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Gilbert C Walker
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - John C Polanyi
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
2
|
Wagner J, Grabnic T, Sibener SJ. STM Visualization of N 2 Dissociative Chemisorption on Ru(0001) at High Impinging Kinetic Energies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:18333-18342. [PMID: 36366757 PMCID: PMC9639351 DOI: 10.1021/acs.jpcc.2c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
This paper examines the reactive surface dynamics of energy- and angle-selected N2 dissociation on a clean Ru(0001) surface. Presented herein are the first STM images of highly energetic N2 dissociation on terrace sites utilizing a novel UHV instrument that combines a supersonic molecular beam with an in situ STM that is in-line with the molecular beam. Atomically resolved visualization of individual N2 dissociation events elucidates the fundamental reactive dynamics of the N2/Ru(0001) system by providing a detailed understanding of the on-surface dissociation dynamics: the distance and angle between nitrogen atoms from the same dissociated N2 molecule, site specificity and coordination of binding on terrace sites, and the local evolution of surrounding nanoscopic areas. These properties are precisely measured over a range of impinging N2 kinetic energies and angles, revealing previously unattainable information about the energy dissipation channels that govern the reactivity of the system. The experimental results presented in this paper provide insight into the fundamental N2 dissociation mechanism that, in conjunction with ongoing theoretical modeling, will help determine the role of dynamical processes such as energy transfer to surface phonons and nonadiabatic excitation of electron-hole pairs (ehps). These results will not only help uncover the underlying chemistry and physics that give rise to the unique behavior of this activated dissociative chemisorption system but also represent an exciting approach to studying reaction dynamics by pairing the angstrom-level spatiotemporal resolution of an in situ STM with nonequilibrium fluxes of reactive gases generated in a supersonic molecular beam to access highly activated chemical dynamics and observe the results of individual reaction events.
Collapse
|
3
|
Leung L, Timm MJ, Polanyi JC. Reversible 1D chain-reaction gives rise to an atomic-scale Newton's cradle. Chem Commun (Camb) 2021; 57:12647-12650. [PMID: 34766176 DOI: 10.1039/d1cc05378g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An F-atom with ∼1 eV translational energy was aimed at a line of fluorocarbon adsorbates on Cu(110). Sequential 'knock-on' of F-atom products was observed by STM to propagate along the 1D fluorocarbon line. Hot F-atoms travelling along the line in six successive 'to-and-fro' cycles paralleled the rocking of a macroscopic Newton's cradle.
Collapse
Affiliation(s)
- Lydie Leung
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| | - Matthew J Timm
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| | - John C Polanyi
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
4
|
Timm MJ, Leung L, Polanyi JC. Direct Observation of Knock-on in Surface Reactions at Zero Impact Parameter. J Am Chem Soc 2021; 143:12644-12649. [PMID: 34370480 DOI: 10.1021/jacs.1c05186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction dynamics examines molecular motions in reactive collisions. The aiming of reagents at one another has been achieved at selected miss distances (impact parameters, b) by using the corrugations on crystalline surfaces as collimator. Prior experimental work and ab initio calculation showed single atoms aimed at chemisorbed molecules with b = 0 gave knock-on of atomic reaction products through a linear transition state. Here we report a study of b = 0 collision between directed CF2 and stationary chemisorbed CF3. Experiments and ab initio calculations again show linear reaction with a linear transition state, despite the additional degrees of freedom for CF2. The directed motion of CF2 is conserved through this linear transition state. Conservation of directionality is evidenced experimentally by the observation of a knock-on chain reaction along a line of chemisorbed CF3.
Collapse
Affiliation(s)
- Matthew J Timm
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Lydie Leung
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - John C Polanyi
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Timm MJ, Leung L, Anggara K, Polanyi JC. Direct observation of knock-on reaction with umbrella inversion arising from zero-impact-parameter collision at a surface. Commun Chem 2021; 4:14. [PMID: 36697691 PMCID: PMC9814886 DOI: 10.1038/s42004-021-00453-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In Surface-Aligned-Reactions (SAR), the degrees of freedom of chemical reactions are restricted and therefore the reaction outcome is selected. Using the inherent corrugation of a Cu(110) substrate the adsorbate molecules can be positioned and aligned and the impact parameter, the collision miss-distance, can be chosen. Here, substitution reaction for a zero impact parameter collision gives an outcome which resembles the classic Newton's cradle in which an incident mass 'knocks-on' the same mass in the collision partner, here F + CF3 → (CF3)' + (F)' at a copper surface. The mechanism of knock-on was shown by Scanning Tunnelling Microscopy to involve reversal of the CF3 umbrella as in Walden inversion, with ejection of (F)' product along the continuation of the F-reagent direction of motion, in collinear reaction.
Collapse
Affiliation(s)
- Matthew J. Timm
- grid.17063.330000 0001 2157 2938Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, ON Canada
| | - Lydie Leung
- grid.17063.330000 0001 2157 2938Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, ON Canada
| | - Kelvin Anggara
- grid.17063.330000 0001 2157 2938Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, ON Canada
| | - John C. Polanyi
- grid.17063.330000 0001 2157 2938Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, ON Canada
| |
Collapse
|
6
|
Civita D, Kolmer M, Simpson GJ, Li AP, Hecht S, Grill L. Control of long-distance motion of single molecules on a surface. Science 2020; 370:957-960. [PMID: 33214276 DOI: 10.1126/science.abd0696] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 11/02/2022]
Abstract
Spatial control over molecular movement is typically limited because motion at the atomic scale follows stochastic processes. We used scanning tunneling microscopy to bring single molecules into a stable orientation of high translational mobility where they moved along precisely defined tracks. Single dibromoterfluorene molecules moved over large distances of 150 nanometers with extremely high spatial precision of 0.1 angstrom across a silver (111) surface. The electrostatic nature of the effect enabled the selective application of repulsive and attractive forces to send or receive single molecules. The high control allows us to precisely move an individual and specific molecular entity between two separate probes, opening avenues for velocity measurements and thus energy dissipation studies of single molecules in real time during diffusion and collision.
Collapse
Affiliation(s)
- Donato Civita
- Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Marek Kolmer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Grant J Simpson
- Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stefan Hecht
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.,DWI -Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Leonhard Grill
- Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
| |
Collapse
|