1
|
Cohen KY, Evans R, Dulovic S, Bocarsly AB. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO 2 Conversion to Fuels and Feedstocks. Acc Chem Res 2022; 55:944-954. [PMID: 35290017 DOI: 10.1021/acs.accounts.1c00643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our global society generates an unwieldy amount of CO2 per unit time. Therefore, the capture of this greenhouse gas must involve a diverse set of strategies. One solution to this problem is the conversion of CO2 into a more useful chemical species. Again, a multiplicity of syntheses and products will be necessary. No matter how elegant the chemistry is, commercial markets often have little use for a small set of compounds made in tremendous yield. Following this reasoning, the Bocarsly Research Group seeks to develop new electrochemical and photochemical processes that may be of utility in the conversion of CO2 to organic compounds. We focus on investigating proton-coupled charge transfer mechanisms that produce both C1 and carbon-carbon bonded products (C2+).In early work, we considered the reduction of CO2 to formate at electrocatalytic indium and tin electrodes. These studies demonstrated the key role of surface oxides in catalyzing the reduction of CO2. This work generated efficient systems for the formation of formate and paved the way to studies using non-copper, intermetallic electrocatalysts for the generation of C2+ species. Most notable is the efficient formation of oxalate at an oxidized Cr3Ga electrode. Oxalate has recently been suggested as a potential nonfossil, alternate organic feedstock.Separately, we have focused on the electrocatalytic effects of pyridine on the reduction of CO2 in aqueous electrolyte. These studies demonstrated that electrodes that normally yield a low hydrogen overpotential (Pd and Pt) show suppressed H2 evolution and strongly enhanced activity for CO2 reduction in the presence of pyridinium. Methanol was observed to form in high Faradaic yield at low overpotential using this system. The 6-electron, 6-proton reduction of CO2 in the presence of pyridinium was intriguing, and significant effort was placed on understanding the mechanism of this reaction both on metal electrodes and on semiconducting photocathodes. P-GaP electrodes were found to provide exceptional behavior for the formation of methanol using only light as the energy source.The pyridinium studies highlighted the role of protons in the overall reduction of CO2, stimulating our interest in the chemistry of MnBr(bpy)(CO)3 and related compounds. This complex was reported to electrochemically reduce CO2 to CO. We saw these reports as an opportunity to study the detailed nature of the proton-coupled electron transfer (PCET) mechanism associated with CO2 reduction. Our investigation of this system revealed the role of hydrogen-bonding in CO2 reduction and pointed the way for the construction of a photochemical process for CO generation using a [(bpy)(CO)3Mn(CN)Mn(bpy)(CO)3]+ photocatalyst.Based on our studies to date, it appears likely that heterogeneous systems can be assembled to convert CO2 into products that are "beyond C2 products." This may open up new practical chemistry in the area of fossil-based replacements for both synthesis and fuels. Systems with pragmatic efficiencies are close to reality. Electrochemical reactors using heterogeneous electrocatalysts show the stability and product selectivity needed to generate industrial opportunities. Continued growth of mechanistic understanding is expected to facilitate the chemical design of cogent systems for the taming of CO2.
Collapse
Affiliation(s)
- Kailyn Y. Cohen
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Rebecca Evans
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephanie Dulovic
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew B. Bocarsly
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
3
|
Devasia D, Wilson AJ, Heo J, Mohan V, Jain PK. A rich catalog of C-C bonded species formed in CO 2 reduction on a plasmonic photocatalyst. Nat Commun 2021; 12:2612. [PMID: 33972538 PMCID: PMC8110802 DOI: 10.1038/s41467-021-22868-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023] Open
Abstract
The understanding and rational design of heterogeneous catalysts for complex reactions, such as CO2 reduction, requires knowledge of elementary steps and chemical species prevalent on the catalyst surface under operating conditions. Using in situ nanoscale surface-enhanced Raman scattering, we probe the surface of a Ag nanoparticle during plasmon-excitation-driven CO2 reduction in water. Enabled by the high spatiotemporal resolution and surface sensitivity of our method, we detect a rich array of C1-C4 species formed on the photocatalytically active surface. The abundance of multi-carbon compounds, such as butanol, suggests the favorability of kinetically challenging C-C coupling on the photoexcited Ag surface. Another advance of this work is the use of isotope labeling in nanoscale probing, which allows confirmation that detected species are the intermediates and products of the catalytic reaction rather than spurious contaminants. The surface chemical knowledge made accessible by our approach will inform the modeling and engineering of catalysts.
Collapse
Affiliation(s)
- Dinumol Devasia
- grid.35403.310000 0004 1936 9991Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Andrew J. Wilson
- grid.35403.310000 0004 1936 9991Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.266623.50000 0001 2113 1622Present Address: Department of Chemistry, University of Louisville, Louisville, KY USA
| | - Jaeyoung Heo
- grid.35403.310000 0004 1936 9991Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Varun Mohan
- grid.35403.310000 0004 1936 9991Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Prashant K. Jain
- grid.35403.310000 0004 1936 9991Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
4
|
Wu CY, Lee CJ, Yu YH, Tsao HW, Su YH, Kaun CC, Chen JS, Wu JJ. Efficacious CO 2 Photoconversion to C2 and C3 Hydrocarbons on Upright SnS-SnS 2 Heterojunction Nanosheet Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4984-4992. [PMID: 33492922 DOI: 10.1021/acsami.0c18420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, SnS-SnS2 heterostructured upright nanosheet frameworks are constructed on FTO substrates, which demonstrate promising photocatalytic performances for the conversion of CO2 and water to C2 (acetaldehyde) and C3 (acetone) hydrocarbons without H2 formation. With post annealing in designated atmospheres, the photocatalytic activity of the SnS-SnS2 heterostructured nanosheet framework is critically enhanced by increasing the fraction of crystalline SnS in nanosheets through partial transformation of the SnS2 matrix to SnS but not obviously influenced by improving the crystallinity of the SnS2 matrix. DFT calculations indicate that transformed SnS possesses the CO2 adsorption sites with significantly lower activation energy for the rate-determining step to drive efficient CO2 conversion catalysis. The experimental results and DFT calculations suggest that the SnS-SnS2 heterojunction nanosheet framework photocatalyst experiences Z-scheme charge transfer dynamic to allow the water oxidation and CO2 reduction reactions occurring on the surfaces of SnS2 and SnS, respectively. The Z-scheme SnS-SnS2 heterostructured nanosheet framework photocatalyst exhibits not only efficient charge separation but also highly catalytic active sites to boost the photocatalytic activity for CO2 conversion to C2 and C3 hydrocarbons.
Collapse
Affiliation(s)
- Chun-Yuan Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chia-Ju Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Hsing Yu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Wen Tsao
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Hsun Su
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chao-Cheng Kaun
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jen-Sue Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jih-Jen Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
5
|
Wilsey MK, Cox CP, Forsythe RC, McCarney LR, Müller AM. Selective CO2 reduction towards a single upgraded product: a minireview on multi-elemental copper-free electrocatalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic conversion of the greenhouse gas carbon dioxide to liquid fuels or upgraded chemicals is a critical strategy to mitigate anthropogenic climate change. To this end, we urgently need high-performance CO2 reduction catalysts.
Collapse
Affiliation(s)
| | - Connor P. Cox
- Materials Science Program
- University of Rochester
- New York 14627
- USA
| | - Ryland C. Forsythe
- Department of Chemical Engineering
- University of Rochester
- New York 14627
- USA
| | - Luke R. McCarney
- Department of Chemical Engineering
- University of Rochester
- New York 14627
- USA
| | - Astrid M. Müller
- Materials Science Program
- University of Rochester
- New York 14627
- USA
- Department of Chemical Engineering
| |
Collapse
|
6
|
Ismail AM, Samu GF, Nguyën HC, Csapó E, López N, Janáky C. Au/Pb Interface Allows the Methane Formation Pathway in Carbon Dioxide Electroreduction. ACS Catal 2020; 10:5681-5690. [PMID: 32455054 PMCID: PMC7236132 DOI: 10.1021/acscatal.0c00749] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/11/2020] [Indexed: 12/16/2022]
Abstract
![]()
The
electrochemical conversion of carbon dioxide (CO2) to high-value
chemicals is an attractive approach to create an
artificial carbon cycle. Tuning the activity and product selectivity
while maintaining long-term stability, however, remains a significant
challenge. Here, we study a series of Au–Pb bimetallic electrocatalysts
with different Au/Pb interfaces, generating carbon monoxide (CO),
formic acid (HCOOH), and methane (CH4) as CO2 reduction products. The formation of CH4 is significant
because it has only been observed on very few Cu-free electrodes.
The maximum CH4 formation rate of 0.33 mA cm–2 was achieved when the most Au/Pb interfaces were present. In situ
Raman spectroelectrochemical studies confirmed the stability of the
Pb native substoichiometric oxide under the reduction conditions on
the Au–Pb catalyst, which seems to be a major contributor to
CH4 formation. Density functional theory simulations showed
that without Au, the reaction would get stuck on the COOH intermediate,
and without O, the reaction would not evolve further than the CHOH
intermediate. In addition, they confirmed that the Au/Pb bimetallic
interface (together with the subsurface oxygen in the model) possesses
a moderate binding strength for the key intermediates, which is indeed
necessary for the CH4 pathway. Overall, this study demonstrates how bimetallic nanoparticles
can be employed to overcome scaling relations in the CO2 reduction reaction.
Collapse
Affiliation(s)
- Ahmed Mohsen Ismail
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321 Alexandria, Egypt
| | - Gergely F. Samu
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
| | - Huu Chuong Nguyën
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Edit Csapó
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
- Department of Medical Chemistry, MTA-SZTE Biomimetic Systems Research Group, Dóm Square 8, Szeged H-6720, Hungary
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
| |
Collapse
|